CONTINUA WHICH ARE THE SUM OF A FINITE NUMBER OF INDECOMPOSABLE CONTINUA

C. E. BURGESS

Swingle [7] has given the following definitions. (1) A continuum M is said to be the finished sum of the continua of a collection G if $G^* = M$ and no continuum of G is a subset of the sum of the others. (2) If n is a positive integer, the continuum M is said to be indecomposable under index n if M is the finished sum of n continua and is not the finished sum of $n+1$ continua.

Swingle has shown [7, Theorem 2] that if n is a positive integer and the continuum M is indecomposable under index n, then M is the finished sum of n indecomposable continua. The author has shown [2, Theorem 1] that if $n=2$ and the continuum M is indecomposable under index n, and G is a collection of n indecomposable continua whose finished sum is M, then G is the only such collection.

In the present paper, it is shown that for a compact continuum, this theorem holds for any positive integer n. Also, there is given a necessary and sufficient condition that a compact continuum be indecomposable under index n.

An indecomposable continuum can be described as a nondegenerate continuum which is indecomposable under index 1. If $n=1$, then in order that a continuum M be indecomposable under index n, it is necessary and sufficient that M contain $n+2$ points such that M is irreducible about any $n+1$ of them. Swingle [7] has shown that it is impossible, in a certain manner, to generalize this theorem. Theorem 3 of the present paper might be considered a generalization of the necessary condition of the above theorem. However, it is easily seen that the converse of Theorem 3 is not true.

Theorems 1–5 are proved on the basis of R. L. Moore's Axioms 0 and 1. Hence these theorems hold in any metric space.

Theorem 1. If $n>1$ and the compact continuum M is the sum of n indecomposable continua M_1, M_2, \ldots, M_n such that, for each $i (i \leq n)$, a composant K_i of M_i does not intersect $M_1 + M_2 + \cdots + M_{i-1}$

Presented to the Society, September 2, 1952; received by the editors May 24, 1952.

1 Numbers in brackets refer to the bibliography at the end of this paper.

2 The sum of the continua of G is denoted by G^*.

3 For a proof of this theorem, see [4, Theorem IV].

4 Moore's axioms are stated in [5]. The first three parts of Axiom 1 are denoted by Axiom 1c.

4 If P is a point of a continuum M, the set of all points X such that $P + X$ lies in a proper subcontinuum of M is called a composant of M.

234
+ M_{i+1} + \cdots + M_n, then \(M \) is indecomposable under index \(n \).

Proof. Suppose that there is a collection \(G \) consisting of \(n+1 \) continua whose finished sum is \(M \). No continuum of \(G \) is a proper subset of one of the indecomposable continua \(M_1, M_2, \cdots, M_n \). Hence, for each \(i \) (\(i \leq n \)), if \(K_i \) intersects a continuum \(X \) of \(G \), then \(X \) contains \(M_i \). Consequently, there exist \(n \) continua of \(G \) such that their sum is \(M \). This is contrary to the supposition that \(M \) is the finished sum of the continua of \(G \). Since \(M \) is the finished sum of the continua \(M_1, M_2, \cdots, M_n \), then it is indecomposable under index \(n \).

Theorem 2. If \(n \) is a positive integer and the compact continuum \(M \) is indecomposable under index \(n \), then there is only one collection of indecomposable continua whose finished sum is \(M \).

Proof. By [7, Theorem 2], there is a collection \(G \) consisting of \(n \) indecomposable continua \(M_1, M_2, \cdots, M_n \) such that \(M \) is their finished sum. By [3, Theorem 1], for each \(i \) (\(i \leq n \)), some composant \(K_i \) of \(M_i \) does not intersect \((G-M_i)^*\). Suppose that there is a collection \(G' \) of indecomposable continua such that \(G' \neq G \) and \(M \) is the finished sum of the continua of \(G' \). Let \(i \) be a positive integer not greater than \(n \). Some continuum \(X_i \) of \(G' \) intersects \(K_i \). Neither of the indecomposable continua \(X_i \) and \(M_i \) is a proper subset of the other. Since no proper subcontinuum of \(M_i \) intersects both \(K_i \) and \((G-M_i)^*\), then \(X_i \subseteq M_i \). Hence \(G' = G \).

Theorem 3. If \(n > 1 \) and the compact continuum \(M \) is indecomposable under index \(n \), then there is a subset \(H \) of \(M \) consisting of \(2n \) points such that \(M \) is irreducible about every subset of \(H \) consisting of \(2n-1 \) points.

Proof. Let \(M_1, M_2, \cdots, M_n \) be \(n \) indecomposable continua whose finished sum is \(M \). For each \(i \) (\(i \leq n \)), let \(K_i \) be a composant of \(M_i \) as described in the proof of Theorem 2. There exists a subset \(H \) of \(M \) such that for each \(i \) (\(i \leq n \)), \(H \cdot M_i \) consists of two points of \(K_i \). The set \(H \) satisfies the requirements of the conclusion of Theorem 3.

Theorem 4. If \(n > 1 \), \(M \) is a compact continuum, \(G \) is a collection consisting of \(n \) indecomposable continua whose finished sum is \(M \), and \(H \) is a finite set of points about which \(M \) is irreducible, then \(M \) is indecomposable under index \(n \).

Lemma 4.1. If the hypothesis of Theorem 4 is satisfied, \(X \) is a continuum of \(G \), and \(T \) is a component of \((G-X)^*\), then some composant of \(X \) does not intersect \(T \).
Proof of Lemma 4.1. Suppose that every composant of X intersects T. Then there exists a finite collection W of proper subcontinua of X such that $W^*+(G-X)^*$ is connected. There exists a finite collection Y of proper subcontinua of X such that (1) every continuum of Y intersects $(G-X)^*$ and (2) if X intersects H, then Y^* contains $X\cdot H$. Since X is indecomposable and M is the finished sum of the continua of G, then Y^*+W^* does not contain $M-(G-X)^*$. Therefore, $W^*+Y^+(G-X)^*$ is a proper subcontinuum of M containing H. This is a contradiction since M is irreducible about H.

Proof of Theorem 4. An inductive argument will be used. Suppose that Theorem 4 is not true. Let k be the smallest positive integer n such that if M is a compact continuum satisfying the hypothesis of Theorem 4, then M is not indecomposable under index n. By Theorem 1, there is a continuum X of G such that every composant of X intersects $(G-X)^*$. By Lemma 4.1, $(G-X)^*$ is not connected. Therefore, $k>2$. The set $(G-X)^*$ is the sum of a finite number of mutually exclusive continua. Let T be one of these continua. Since M is irreducible about H, then $T\cdot T-X$ contains a point of H. By Lemma 4.1, there is a composant of X which does not intersect T. Let P be a point of such a composant. The continuum $T+X$ is irreducible about the finite set $H\cdot T+P$. There is a positive integer j less than k such that $T+X$ is the finished sum of j continua of G. Then $T+X$ is indecomposable under index j. By [3, Theorem 1], every continuum of G which is a subset of $T+X$ contains a composant which does not intersect any other continuum of G which is a subset of $T+X$. Therefore, every continuum of $G-X$ contains a composant which does not intersect any other continuum of G. Let L be a collection consisting of $k-1$ points such that if Z is a continuum of $G-X$, then a point of L belongs to a composant of Z lying in $M-(G-Z)^*$. Since, by supposition, M is not indecomposable under index k, then there is a collection G' consisting of $k+1$ continua whose finished sum is M. Since the set L is contained in the sum of $k-1$ continua of G', then $(G-X)^*$ is contained in the sum of $k-1$ continua of G'. Hence there exist two continua X_1 and X_2 of G' such that each of them contains a point of $M-(G-X)^*$ which does not belong to any other continuum of G'. Let R be a domain intersecting X_1 and not intersecting $(G'-X_1)^*+(G-X)^*$. Every composant of X intersects R. Therefore, there exists a finite collection W of proper sub-

* This follows from the fact that every proper subcontinuum of an indecomposable continuum M is a continuum of condensation of M [4, Theorem III] and the fact that no indecomposable continuum is the sum of a finite number of its proper subcontinua [4, Theorem III].
continua of X such that $X_1 + W^* + (G - X)^*$ is a continuum. Let Y be a finite collection of continua as described in the proof of Lemma 4.1. Since $X_1 + Y^* + W^* + (G - X)^*$ is a subcontinuum of M containing H, then $X_1 + Y^* + W^* + (G - X)^* = M$. Since X is indecomposable and $X_1 + (G - X)^*$ contains $X - (Y^* + W^*)$, then $X_1 + (G - X)^*$ contains X. This is impossible since $X_1 + (G - X)^*$ does not contain X_2. Thus the supposition that Theorem 4 is not true has led to a contradiction.

Theorem 5. If $n > 1$, then in order that the compact continuum M should be indecomposable under index n, it is necessary and sufficient that M should be the finished sum of n indecomposable continua and be irreducible about some n points.

The necessity follows from [7, Theorem 2] and [3, Theorem 2]. The sufficiency follows from Theorem 4.

Theorem 6. If the compact continuum M in the plane is the finished sum of two indecomposable continua H and K such that some composant of H does not intersect K, then M is indecomposable under index two.

Lemma 6.1. If the hypothesis of Theorem 6 is satisfied and K_1 and K_2 are mutually exclusive simple discs intersecting K but not H, then there do not exist four mutually exclusive continua W_1, W_2, W_3, and W_4 such that, for each $i (i \leq 4)$, W_i belongs to K, intersects H, and is irreducible from K_1 to K_2.

Proof of Lemma 6.1. Suppose that there do exist four such continua. Let D denote the complementary domain of $K_1 + K_2$. Consider the case in which $W_3 + W_4$ separates W_1 from W_2 in D. Let R_1 and R_2 be connected domains intersecting H, W_1, and H, W_2, respectively and not intersecting $K_1 + K_2 + W_3 + W_4$. There is a composant L of H which intersects both R_1 and R_2 and lies in $M - K$. Then L intersects $K_1 + K_2 + W_3 + W_4$. This is a contradiction since $M - K$ does not intersect $K_1 + K_2 + W_3 + W_4$.

Proof of Theorem 6. Suppose, on the contrary, that M is the finished sum of three continua M_1, M_2, and M_3. One of these three continua intersects a composant of H lying in $M - K$. Suppose that M_1 is such a continuum. Then it contains H and intersects each of
the continua M_1 and M_2. Each of the continua M_2 and $M_1 + M_2$ contains a point of K not belonging to the other of these two continua. Since the closure of $M - (M_1 + M_2)$ is a proper subset of the indecomposable continuum K, then $M - (M_1 + M_2)$ is not connected. Let T_1 and T_2 be two mutually separated sets whose sum is $M - (M_1 + M_2)$. Let K_1 and K_2 be two mutually exclusive simple discs whose interiors intersect T_1 and T_2 respectively such that K_1 and K_2 do not intersect $T_1 + M_1 + M_2$ and $T_1 + M_1 + M_2$ respectively. Since every composant of K intersects both K_1 and K_2, there exist six distinct composants of K each of which contains a continuum irreducible from K_1 to K_2. By Lemma 6.1, at most three of these intersect H, and hence three do not. Denote three which do not by W_1, W_2, and W_3. Let D denote the complementary domain of $K_1 + K_2$. There exist two of the continua W_1, W_3, and W_2 such that their sum separates the other one from H in D. Consider the case in which $W_1 + W_3$ separates W_2 from H in D. Let I denote the complementary domain of $K_1 + K_2 + W_1 + W_3$ which contains the connected set $W_2 - W_1 \cdot (K_1 + K_2)$. Since one of the sets $K_1 \cdot W_1$ and $K_2 \cdot W_2$ belongs to T_1 and the other to T_2, then $I \cdot W_2$ contains a point of the continuum $M_1 + M_2$. Since H is a subset of $M_1 + M_2$ and does not intersect I, then there is a continuum Z belonging to $I \cdot (M_1 + M_2)$ and intersecting both W_2 and $W_1 + W_3$. But this is impossible since Z is a proper subcontinuum of K intersecting two composants of K. Thus the supposition that M is the finished sum of three continua has led to a contradiction.

Theorem 7. If the hypothesis of Theorem 6 is satisfied, then uncountably many composants of K lie in $M - H$.

This theorem follows from Theorem 6 and [3, Theorem 1].

Remark. Neither Theorem 6 nor Theorem 7 holds true in Euclidean three-dimensional space. Let H' be the point set obtained by translating the point set H of [2, Example 1] one-half unit to the left. Let H'' be a point set obtained by revolving H' through 90 degrees about the vertical line whose equation is $x = 1/2$. Only one composant of H'' intersects H, but every composant of H intersects H''. It follows from [3, Theorem 1] and Theorem 2 that the continuum $H + H''$ is not indecomposable under index two.

Added in proof. I have recently observed that Theorem 6 follows from Theorem 1 and a lemma proved by N. E. Rutt [Some theorems on triodic continua, Amer. J. Math. vol. 56 (1934) pp. 122-132, Lemma 1]. I regret that I was not aware of Rutt's lemma at the time I prepared this paper.
BIBLIOGRAPHY

The University of Utah