4. Proof of Theorem 2. Harish-Chandra [1] and others have proved that every Lie algebra over a field of characteristic zero has a faithful representation. Consequently by Lemma 4, \mathfrak{g} has a faithful representation $x \rightarrow Q_x$ whose matrices have elements in an algebraic extension \mathfrak{R} of \mathfrak{g} such that $t(Q_x Q_y) = 0$ for all $x \in \mathfrak{R}$ and all $y \in \mathfrak{g}$. We now apply another form of Cartan's criterion for solvability which states that if $t(A^2) = 0$ for all A in a Lie algebra \mathfrak{A} of linear transformations, then \mathfrak{A} is solvable, and deduce that the ideal \mathfrak{B} of all x of \mathfrak{g} such that $t(Q_x Q_y) = 0$ for every $y \in \mathfrak{g}$ is solvable. This proves the theorem for we now have $\mathfrak{B} = \mathfrak{R}$ as above.

References

Emory University

A SUBDIRECT-UNION REPRESENTATION FOR COMPLETELY DISTRIBUTIVE COMPLETE LATTICES

GEORGE N. RANEY

1. Introduction. In [1], Garrett Birkhoff makes the following remark: "Tarski has shown that any complete, completely distributive Boolean algebra is isomorphic with the field of subsets of a suitable set. One can also show that any closed sublattice of a direct union of complete chains is a complete, completely distributive lattice. The question is (no. 69), are there any other complete, completely distributive lattices?" This paper will answer Birkhoff's question by proving the following theorem:2

Theorem A. Every completely distributive complete lattice is iso-
morphic with a closed sublattice of the direct union of a family of complete chains.

2. A characterization of complete distributivity.

Definition 1. If L is a partially ordered set and if M is a subset of L such that if $x \in M$ and $y \leq x$, then $y \in M$, then M is called a semi-ideal of L. Let $R(L)$ denote the complete lattice of semi-ideals of L.

Definition 2. If L is a complete lattice and $x \in L$, then let $K(x) = \prod \{ M \mid M \in R(L) \text{ and } x \leq \bigcup M \}$.

Lemma 1. If L is a complete lattice, then
(A) if $x \in L$, then $\bigcup K(x) \leq x$;
(B) if $x \in L$, $y \in L$, and $x \leq y$, then $K(x) \subseteq K(y)$;
(C) if $A \subseteq L$, then $\bigcup \{ K(a) \mid a \in A \} = K(\bigcup A)$.

Proof. If $x \in L$, then $\{ t \mid t \leq x \} \in R(L)$ and $\bigcup \{ t \mid t \leq x \} = x$, so that $K(x) \subseteq \{ t \mid t \leq x \}$. Therefore $\bigcup K(x) \leq x$. If $x \in L$, $y \in L$, and $x \leq y$, then $\{ M \mid M \in R(L) \text{ and } y \leq \bigcup M \} \subseteq \{ M \mid M \in R(L) \text{ and } x \leq \bigcup M \}$; hence $K(x) \subseteq K(y)$. If $A \subseteq L$ and $t \in \bigcup \{ K(a) \mid a \in A \}$, then for every $a \in A$, $t \in K(a)$ and one can choose an $M_a \subseteq R(L)$ such that $t \in M_a$ and $a \leq \bigcup M_a$. Then $t \in \bigcup \{ K(a) \mid a \in A \}$. Moreover, $K(\bigcup A) \subseteq \bigcup \{ K(a) \mid a \in A \}$, since $\bigcup \{ K(a) \mid a \in A \} \subseteq R(L)$ and $\bigcup A \subseteq \bigcup \{ K(a) \mid a \in A \}$.

Lemma 2. In order that a complete lattice L be completely distributive it is necessary and sufficient that if $\{ M_y \mid y \in C \}$ is a family of semi-ideals of L, then $\bigcap \{ \bigcup M_y \mid y \in C \} \leq \bigcup \{ M_y \mid y \in C \}$.

This follows from Theorem 1 and Lemma 5 of [3].

Theorem 1. In order that a complete lattice L be completely distributive it is necessary and sufficient that for every $x \in L$, $\bigcup K(x) = x$.

Proof. To prove necessity, let the complete lattice L be completely distributive. If $x \in L$, then $x \leq \bigcap \{ \bigcup M \mid M \in R(L) \text{ and } x \leq \bigcup M \} \leq \bigcup \{ M \mid M \in R(L) \text{ and } x \leq \bigcup M \} = \bigcup K(x)$. This, together with Lemma 1(A), implies that $\bigcup K(x) = x$ for every $x \in L$.

To prove sufficiency, let L be a complete lattice such that for every $x \in L$, $\bigcup K(x) = x$. If $\{ M_y \mid y \in C \}$ is a family of semi-ideals of L and if $t \in K(\bigcap \{ \bigcup M \mid M \in R(L) \text{ and } x \leq \bigcup M \})$, then for every $y \in C$, $t \in K(M_y)$, by Lemma 1(B), and $t \in \bigcup \{ K(x) \mid x \in M_y \}$, by Lemma 1(C). For every $y \in C$ one can choose an $x_y \in M_y$ such that $t \in K(x_y)$ and then $t \leq \bigcap K(x_y) = x_y$. Hence $t \leq \bigcap \{ x_y \mid y \in C \}$ and, since $\bigcap \{ x_y \mid y \in C \} \in \bigcap \{ M_y \mid y \in C \}$, $t \in \bigcap \{ M_y \mid y \in C \}$. Therefore $K(\bigcap \{ M_y \mid y \in C \})$
\[\prod \{ M_{\gamma} | \gamma \in C \} \]. It follows that \(\bigcap \bigcup M_{\gamma} \bigcap \gamma \in C \) = \(\bigcap \bigcup M_{\gamma} \bigcap \gamma \in C \), and, by Lemma 2, \(L \) is completely distributive.

Definition 3. If \(L \) is a complete lattice, let \(\rho \) be the binary relation on \(L \) defined as follows: \(x \rho y \) if and only if \(x \in L, \gamma \in L, \) and \(x \in K(y) \).

Definition 4. If \(\sigma \) is a binary relation on a set \(X \), let \(\sigma \circ \sigma \) be the binary relation on \(X \) defined as follows: \(x \sigma \circ \sigma y \) if and only if there exists a \(z \) such that \(x \sigma z \) and \(z \sigma y \).

Corollary. If \(L \) is a completely distributive complete lattice, then \(\rho = \rho \circ \rho \).

Proof. For every \(x \in L, K(x) = K(\bigcup K(x)) = \bigcup \{ K(a) | a \in K(x) \} \), by Theorem 1 and Lemma 1(C). It then follows that \(\rho = \rho \circ \rho \).

The nonmodular lattice of five elements is a complete lattice in which \(\rho = \rho \circ \rho \) and which is not completely distributive. Hence the converse of the corollary is not true.

3. **Relations \(\sigma = \sigma \circ \sigma \).** Let \(X \) be a set and let \(\sigma \) be a binary relation on \(X \) such that \(\sigma = \sigma \circ \sigma \).

Definition 5. If \(A \subseteq X \), let \(\phi(A) \) be the set of \(x \in X \) such that there exists a \(y \in A \) such that \(x \sigma y \). Let \(L(\sigma) \) be the family \(\{ \phi(A) | A \subseteq X \} \), partially ordered by set-inclusion.

Theorem 2. If \(\sigma \) is a binary relation on a set \(X \) and if \(\sigma = \sigma \circ \sigma \), then \(L(\sigma) \) is a completely distributive complete lattice. If, in addition, \(\sigma \) is reflexive, then \(L(\sigma) \) is a complete ring of sets.

Proof. If \(\{ A_{\gamma} | \gamma \in C \} \) is a family of subsets of \(X \), and if \(x \in \phi(\bigcup \{ A_{\gamma} | \gamma \in C \}) \), then there is a \(\gamma \in C \) and a \(A_{\gamma} \subseteq X \) such that \(x \sigma y \). Then \(x \in \phi(A_{\gamma}) \); hence \(x \in \sum \{ \phi(A_{\gamma}) | \gamma \in C \} \). This proves that \(\phi(\bigcup \{ A_{\gamma} | \gamma \in C \}) \subseteq \sum \{ \phi(A_{\gamma}) | \gamma \in C \} \). For every \(\gamma \in C \), \(\phi(A) \subseteq \phi(\bigcup \{ A_{\gamma} | \gamma \in C \}) \). Therefore \(\sum \{ \phi(A_{\gamma}) | \gamma \in C \} = \phi(\bigcup \{ A_{\gamma} | \gamma \in C \}) \) and \(L(\sigma) \) is closed with respect to union. Hence \(L(\sigma) \) is a complete lattice, in which joins are unions; that is, \(\bigcup \{ \phi(A_{\gamma}) | \gamma \in C \} = \sum \{ \phi(A_{\gamma}) | \gamma \in C \} \).

If \(A \subseteq X \) and \(x \in \phi(A) \), then there is a \(y \in A \) such that \(x \sigma y \). Since \(\sigma = \sigma \circ \sigma \), there is a \(t \) such that \(x \sigma t \) and \(t \sigma y \). Hence if \(x \in \phi(A) \), then there is a \(t \in \phi(A) \) such that \(x \in \phi(\{ t \}) \). Therefore \(\phi(A) \subseteq \bigcup \{ \phi(\{ t \}) | t \in \phi(A) \} \).

If \(t \in \phi(A) \) and \(M \) is a semi-ideal in \(L(\sigma) \) such that \(\phi(A) \subseteq \bigcup M \), then there exists a \(B \subseteq X \) such that \(\phi(B) \subseteq M \) and \(t \in \phi(B) \). Then \(\phi(\{ t \}) \subseteq \phi(B) \); hence \(\phi(\{ t \}) \subseteq M \). Therefore, if \(t \in \phi(A) \), then \(\phi(\{ t \}) \subseteq K(\phi(A)) \). It follows that \(\phi(A) \subseteq \bigcup K(\phi(A)) = \bigcup K(\phi(A)) \). This,
together with Lemma 1(A), implies that $\phi(A) = \bigcup K(\phi(A))$ for every $A \subseteq X$. This proves that $L(\sigma)$ is completely distributive.

If, in addition, σ is reflexive, then for every $A \subseteq X, A \subseteq \phi(A)$. Hence if $\{A_\gamma \mid \gamma \in C\}$ is a family of subsets of X, then $\prod \{\phi(A_\gamma) \mid \gamma \in C\} \subseteq \phi(\prod \{\phi(A_\gamma) \mid \gamma \in C\})$. On the other hand, for every $\gamma \in C$, $\phi(\prod \{\phi(A_\gamma) \mid \gamma \in C\}) \subset \phi(\phi(A_\gamma)) = \phi(A_\gamma)$. Therefore, $\prod \{\phi(A_\gamma) \mid \gamma \in C\} = \phi(\prod \{\phi(A_\gamma) \mid \gamma \in C\})$, and $L(\sigma)$ is closed with respect to intersection as well as union. In other words, $L(\sigma)$ is a complete ring of sets.

If $\sigma = \sigma \circ \sigma$ and σ is reflexive, then σ is a quasi-ordering. Theorem 2 shows that the relation between completely distributive complete lattices and relations $\sigma = \sigma \circ \sigma$ is a generalization of the relation between complete rings of sets and quasi-orderings. The latter relation has been studied by G. Birkhoff in [2].

4. Proof of Theorem A.

Definition 6. If σ is a binary relation on a set X, and if C is a subset of X such that if $x \in C$ and $y \in C$, then either $x = y$ or $x \sigma y$ or $y \sigma x$, then C is called a chain in σ. If C is a chain in σ which is not properly contained in any chain in σ, then C is called a maximal chain in σ.

It follows from Zorn's Lemma that every chain in σ is contained in a maximal chain in σ.

Let L be a completely distributive complete lattice and let Γ be the family of maximal chains in ρ. If $C \in \Gamma$ and $a \in L$, let $f(C, a)$ be the set of $t \in C$ such that there exists an $x \in C$ such that $t \rho x a$. If $C \in \Gamma$, let $F_C = \{f(C, a) \mid a \in L\}$.

For every $x \in L$, $\sum f(C, x) \mid C \in \Gamma = K(x)$. If $t \in K(x)$, then $\{t, x\}$ is a chain in ρ, so that there is a $C \in \Gamma$ such that $\{t, x\} \subseteq C$. Since C is maximal and $\rho = \rho \circ \rho$, there is a $y \in C$ such that $t \rho y p x$. Then $t \in f(C, x)$. Therefore $K(x) \subseteq \sum f(C, x) \mid C \in \Gamma$. On the other hand, if $t \in f(C, x)$ for some $C \in \Gamma$, then $t \in K(x)$. Therefore $\sum f(C, x) \mid C \in \Gamma \subseteq K(x)$.

If $a \in L$ and $b \in L$, then either $f(C, a) \subseteq f(C, b)$ or $f(C, b) \subseteq f(C, a)$. For if $f(C, a)$ is not contained in $f(C, b)$, then there is a $t \in f(C, a)$ such that $t \notin f(C, b)$. If $y \in f(C, b)$, then neither $t = y$ nor $t \rho y$; otherwise $t \in f(C, b)$. Hence $y \notin f(C, a)$. Then $f(C, b) \subseteq f(C, a)$. Therefore, for every $C \in \Gamma$, F_C is a chain in the relation of set-inclusion on the set of subsets of C.

If $C \in \Gamma$ and $A \subseteq L$, then $\sum f(C, a) \mid a \in A = f(C, U A)$. For $t \in f(C, U A)$ if and only if $t \in C$ and there is an $x \in C$ such that $t \rho x p A$. By Lemma 1(C), $t \rho x p U A$ if and only if there exists an $a \in A$ such that $t \rho x p a$. Hence $t \in f(C, U A)$ if and only if there exists an $a \in A$ such that $t \in f(C, a)$. Therefore F_C is closed with respect to union, for every
If \(C \in \Gamma \), it follows that for every \(C \in \Gamma \), \(F_C \) is a complete chain in which, if \(F_C \subseteq F \), then \(\cap F = \{ f(C, b) \mid b \in L \} \) and \(\cup F = \{ f(C, b) \mid b \in L \} \).

If \(C \in \Gamma \) and \(A \subseteq L \), then \(\cap \{ f(C, a) \mid a \in A \} = f(C, \cap A) \). For if \(t \in \cap \{ f(C, a) \mid a \in A \} \), then there exists a \(b \in L \) such that \(t \in f(C, b) \) and \(f(C, b) \subseteq \prod \{ f(C, a) \mid a \in A \} \). Then \(t \in C \) and there exists an \(s \in C \) such that \(tpsb \). Since \(\rho = \rho \circ \rho \) and since \(C \) is a maximal chain in \(\rho \), there exists \(u \in C \) and \(y \in C \) such that \(tpuypsb \). Then \(y \in f(C, b) \), and for every \(a \in A \), \(y \in f(C, a) \). Hence \(y \leq a \) for every \(a \in A \); so that \(y \leq \cap A \). By Lemma 1(B), \(tpu p \cap A \), and \(t \in f(C, \cap A) \). Therefore \(\cap \{ f(C, a) \mid a \in A \} \subseteq f(C, \cap A) \). On the other hand, \(f(C, \cap A) \subseteq \prod \{ f(C, a) \mid a \in A \} \), by Lemma 1(B). Therefore, \(f(C, \cap A) \subseteq \cap \{ f(C, a) \mid a \in A \} \).

Let \(D \) be the direct union of the family of complete chains \(\{ F_C \mid C \in \Gamma \} \). \(D \) consists of all functions \(\theta : \Gamma \to \prod \{ f(C) \mid C \in \Gamma \} \) such that for every \(C \in \Gamma \), \(\theta(C) \subseteq F_C \). Furthermore \(D \) is a complete lattice in which, if \(D_1 \subseteq D \), then \((\cup D_1)(C) = \cup \{ \theta(C) \mid \theta \in D_1 \} \) and \((\cap D_1)(C) = \cap \{ \theta(C) \mid \theta \in D_1 \} \), for every \(C \in \Gamma \).

For every \(a \in L \), let \(\theta_a \) be the member of \(D \) such that for every \(C \in \Gamma \), \(\theta_a(C) = f(C, a) \). Let \(L^* = \{ \theta_a \mid a \in L \} \). The mapping \(a \rightarrow \theta_a \) is a one-to-one mapping of \(L \) onto \(L^* \). For if \(\theta_a = \theta_b \), then for every \(C \in \Gamma \), \(f(C, a) = f(C, b) \). Then \(a = \cup K(a) = \cup \{ f(C, a) \mid C \in \Gamma \} = \cup \sum \{ f(C, b) \mid C \in \Gamma \} = \cup K(b) = b \).

If \(A \subseteq L \), then \(\cup \{ \theta_a \mid a \in A \} = \theta_{\cup A} \). For, if \(C \in \Gamma \), then \((\cup \{ \theta_a \mid a \in A \})(C) = \cup \{ \theta_a(C) \mid a \in A \} = \cup \{ f(C, a) \mid a \in A \} = \sum \{ f(C, a) \mid a \in A \} = f(C, \cup A) = \theta_{\cup A}(C) \). Also if \(A \subseteq L \), then \(\cap \{ \theta_a \mid a \in A \} = \theta_{\cap A} \). For, if \(C \in \Gamma \), then \((\cap \{ \theta_a \mid a \in A \})(C) = \cap \{ \theta_a(C) \mid a \in A \} = \cap \{ f(C, a) \mid a \in A \} = f(C, \cap A) = \theta_{\cap A}(C) \).

It follows that \(L^* \) is a closed sublattice of \(D \), and that the mapping \(a \rightarrow \theta_a \) is a complete-isomorphism of \(L \) onto \(L^* \).

References

Columbia University