A SUFFICIENT CONDITION FOR A REGULAR MATRIX TO SUM A BOUNDED DIVERGENT SEQUENCE

A. MARY TROPPER

If a matrix \(A \) transforms a sequence \(\{ z_n \} \) into the sequence \(\{ s_n \} \), i.e., if \(s_n = \sum_{k=1}^{n} a_{n,k} z_k \), and if \(s_n \to z \) as \(n \to \infty \) whenever \(z_n \to z \), \(A \) is said to be regular. The well known necessary and sufficient conditions for \(A \) to be regular are:

(a) \(\sum_{n=1}^{\infty} |a_{n,k}| < M \) for every positive integer \(n > n_0 \),
(b) \(\lim_{n \to \infty} a_{n,k} = 0 \) for every fixed \(k \),
(c) \(\sum_{k=1}^{\infty} a_{n,k} \equiv A \to 1 \) as \(n \to \infty \).

It is known that if a regular matrix sums a bounded divergent sequence, then it also sums some unbounded sequence. The converse is, however, false. It is consequently of interest to find sufficient conditions for a regular matrix to sum a bounded divergent sequence. Many authors have considered summability of bounded sequences. R. P. Agnew has given a simple sufficient condition that a regular matrix shall sum a bounded divergent sequence. He has proved that if \(A \) is a regular matrix such that \(\lim_{n \to \infty} a_{n,k} = 0 \), then some divergent sequences of 0's and 1's are summable-\(A \). There are, however, very many simple regular matrices which do not satisfy this condition, but which are known to sum a bounded divergent sequence. For example, the matrix \(A \) obtained by replacing every third row of the Cesàro matrix \((C, 1) \) by the corresponding row of the unit matrix, given by

\[
\begin{align*}
 a_{3n-2,k} &= \frac{1}{3n-2} \quad (k \leq 3n-2), \\
 a_{3n-1,k} &= \frac{1}{3n-1} \quad (k \leq 3n-1), \\
 a_{3n,k} &= \delta_{3n,k}, \\
 a_{n,k} &= 0 \quad (k > n)
\end{align*}
\]

sums the sequence \(\{ 0, 2, 1, 0, 2, 1, 0, \ldots \} \) to the limit 1. This matrix does, however, satisfy the conditions which will be given in Theorem II.

I first show that I need consider only normal matrices, i.e., lower-

Received by the editors November 10, 1952 and, in revised form, January 16, 1953.

1 See R. G. Cooke [1, pp. 64-65].
2 Stated without proof by S. Mazur and W. Orlicz [2]; a proof is given by V. M. Darevsky [3]. See also J. D. Hill [4]; A. Wilansky [5]; K. Zeller [6].
3 See R. G. Cooke [1, p. 178, Examples 7, no. 10].
4 See, e.g., G. G. Lorentz [7; 8]; R. P. Agnew [9]; A. Wilansky [10; 11].
5 R. P. Agnew [12, pp. 128-132]; this is a special case of G. G. Lorentz [7, p. 181, Theorem 8 and footnote].

671
semi-matrices with no zero element in the leading diagonal. A normal matrix has a unique right-hand reciprocal which is also normal, and which is also a left-hand reciprocal.\footnote{R. G. Cooke [1, pp. 19, 22].} If a matrix B is such that $\|B\| = \sup_n \sum_k |b_{n,k}| = \infty$, then, by a method now classical, we can construct a null sequence whose B-transform is unbounded. It is not, in general, possible to construct a null sequence whose B-transform is bounded and divergent. This can be done, however, if B is normal and its columns form null sequences. This is the main result of this paper and its interest lies in its sufficiency that $B^{-1}=A$ shall sum a bounded divergent sequence.

The following theorem is due to A. Brudno.\footnote{A. Brudno [13].} Brudno's proof, however, is somewhat complicated, and I give here a simpler proof.

Theorem I. If A is a general (square) regular matrix, there exists a normal regular matrix A^*, such that A and A^* are mutually consistent\footnote{I.e., A^* sums, to the same limit, every bounded sequence which is summable-A and vice versa.} for bounded sequences.

Proof. Let $\{e_n\}$ be any null sequence with $e_n > 0$ for each n. Since A is regular, by (a) we can choose a monotonic increasing sequence of positive integers $\{p_n\}$ ($n = 1, 2, \cdots$) such that

$$\sum_{k=p_n+1}^{\infty} |a_{n,k}| < e_n$$

for every n.

Let the matrix A^* be given by

$$a_{n,k}^* = a_{1,k} \quad (1 \leq k < n < p_1),$$

$$a_{n,n}^* = \begin{cases} a_{1,n} & (a_{1,n} \neq 0) \\ 1/n & (a_{1,n} = 0) \end{cases} \quad (n < p_1),$$

$$a_{n,k}^* = a_{1,k} \quad (p_1 \leq n < p_{l+1}, l \geq 1, 1 \leq k < n),$$

$$a_{n,n}^* = \begin{cases} a_{1,n} & (a_{1,n} \neq 0) \\ 1/n & (a_{1,n} = 0) \end{cases} \quad (p_1 \leq n < p_{k+1}, l \geq 1),$$

$$a_{n,k}^* = 0 \quad (k > n).$$

Let $\sigma_n = A(z_n) = \sum_{k=1}^{n} a_{n,k}z_k$, $\rho_n = A^*(z_n) = \sum_{k=1}^{n} a_{n,k}^*z_k$. If $p_1 \leq n < p_{l+1}$, $\sigma_l - \rho_n = \sum_{k=n+1}^{\infty} a_{1,k}z_k + (a_{1,n} - a_{n,n}^*)z_n$. Hence, if $\{z_n\}$ is a bounded sequence for which $|z_n| \leq M$ for every n,
\[|\sigma_1 - \rho_n| \leq M \sum_{k=p+1}^{\infty} |a_{1,k}| + \frac{M}{n} \]
\[< M \left(\epsilon_1 + \frac{1}{n} \right) \to 0 \quad \text{as } n \to \infty, \]

since \(n \) and \(l \) tend to \(\infty \) together.

Thus \(A(z_n) \) and \(A^*(z_n) \) either both converge to the same limit, or neither converges, and \(A^* \) is normal.

I now prove the main theorems.

Theorem II. In order that the regular normal matrix \(A \) shall sum a bounded divergent sequence it is sufficient that its unique two-sided reciprocal \(B \) shall not be regular, and that all the columns of \(B \) shall form bounded sequences.

Theorem III. In order that the regular normal matrix \(A \) shall sum a bounded divergent sequence it is sufficient that

(a) its unique reciprocal \(B \) shall not be regular, and

(b) there exists a normal matrix \(Q \) with \(||Q|| < \infty \), whose columns are all null sequences, such that the matrix \(C = BQ \) has bounded columns and \(||C|| = \infty \).

Proof of Theorem III. If \(A(z_n) = \sigma_n \), then

\[B(\sigma_n) = B[A(z_n)] = (BA)(\sigma_n) = (\sigma_n), \]

the alteration in the order of summation being justified, since only finite sums are involved.

If \(B \) is regular, \(\{z_n\} \) converges whenever \(\{\sigma_n\} \) converges, so that \(A \) sums only convergent sequences. If \(B \) is not regular, there exists a convergent sequence \(\{\sigma_n\} \) such that \(\{z_n\} \) is divergent. Thus, in order that \(A \) shall be stronger than convergence it is necessary and sufficient that \(B \) shall not be regular.

Since \(B \) and \(Q \) are normal, \(C = BQ \) is also normal, and hence

\[AC = A(BQ) = (AB)Q = Q, \]

so that, assuming condition (b), \(A \) transforms each column of \(C \) into a null sequence. Since \(A \) is regular, it follows that each column of \(C \) is either a divergent or a null sequence. If at least one column of \(C \) is divergent, the result is proved. There remains to be considered only the case in which all the columns of \(C \) form null sequences. Thus \(c_{n,k} \to 0 \) as \(n \to \infty \) for every fixed \(k \), and if \(M_n = \sum_{k=1}^{n} |c_{n,k}| \), the sequence \(\{M_n\} \) is unbounded, by hypothesis, and therefore has a subsequence which tends to infinity.
If $Z = r e^{i \theta}$, let $\text{sgn } Z = e^{-\theta} (Z \neq 0)$, $\text{sgn } 0 = 0$.
Choose a positive integer n_1 such that $M_{n_1} > M_n$ for all $n < n_1$. Put

$$x_k = \frac{\text{sgn } (c_{n_1,k})}{M_{n_1}} \quad (k \leq n_1).$$

If $C(x_n) = y_n$,

$$y_{n_1} = \sum_{k=1}^{n_1} c_{n_1,k} x_k = \frac{1}{M_{n_1}} \sum_{k=1}^{n_1} |c_{n_1,k}| = 1.$$

Let $\epsilon > 0$ be fixed and arbitrarily small. We can choose $n_2 > n_1$ such that

$$\sum_{k=1}^{n_1} |c_{n_1,k}| < \frac{1}{2} \epsilon \quad \text{for every } n \geq n_3$$

and

$$M_{n_2} > M_n \quad \text{for every } n < n_2.$$

Put

$$x_k = -\frac{\text{sgn } (c_{n_2,k})}{M_{n_2}} \quad (n_1 < k \leq n_2).$$

Then

$$y_{n_2} = \sum_{k=1}^{n_1} c_{n_2,k} x_k - \sum_{k=n_2+1}^{n_3} c_{n_2,k} \text{sgn } (c_{n_2,k}) = \frac{1}{M_{n_1}} \sum_{k=1}^{n_1} |c_{n_2,k}| - \frac{1}{M_n} \sum_{k=n_2+1}^{n_3} |c_{n_2,k}|.$$

We now choose $n_3 > n_2$ such that

$$\sum_{k=n_2+1}^{n_3} |c_{n_2,k}| < \frac{1}{2} \epsilon \quad \text{for every } n \geq n_3,$$

and

$$M_{n_3} > M_n \quad \text{for every } n < n_3.$$

Put

$$x_k = \frac{\text{sgn } (c_{n_3,k})}{M_{n_3}} \quad (n_2 < k \leq n_3).$$

Then
\[y_n = - \frac{1}{M_n} \sum_{k=1}^{n} c_{nk, k} \text{sgn} (e_{n1, k}) - \frac{1}{M_n} \sum_{k=n+1}^{n} c_{nk, k} \text{sgn} (e_{n2, k}) \]
\[+ \frac{1}{M_n} \sum_{k=n+1}^{\infty} |c_{nk, k}|. \]

Continue in this way; thus

\[x_k = (-1)^{p-1} \frac{\text{sgn} (c_{np, k})}{M_p} \quad (n_p < k \leq n_p). \]

For any integer \(p \),

\[1 - \frac{1}{M_n} \sum_{k=n_{p-1}+1}^{n_p} |c_{np, k}| = \frac{1}{M_n} \left\{ \sum_{k=1}^{n} |c_{np, k}| + \sum_{k=n+1}^{n} |c_{np, k}| + \cdots \right. \]
\[+ \frac{1}{M_{n_{p-1}}} \sum_{k=n_{p-1}+1}^{n_p} |c_{np, k}| \left\} \right. \]
\[< \frac{1}{M_n} \left\{ \frac{1}{2} + \frac{1}{2^2} \epsilon + \cdots + \frac{1}{2^{p-1}} \epsilon \right\} \]
\[< \frac{\epsilon}{M_n} \to 0 \quad \text{as} \ p \to \infty, \]

and is arbitrarily small for \(p = 1, 2, 3, \ldots \). If \(p \) is odd,

\[y_{n_p} - \frac{1}{M_n} \sum_{k=n_{p-1}+1}^{n_p} |c_{np, k}| \]
\[< \frac{1}{M_n} \sum_{k=1}^{n} |c_{np, k}| + \frac{1}{M_n} \sum_{k=n+1}^{n} |c_{np, k}| + \cdots + \frac{1}{M_{n_{p-1}}} \sum_{k=n_{p-1}+1}^{n_p} |c_{np, k}| \]
\[< \frac{1}{M_n} \frac{1}{2} \epsilon + \frac{1}{M_n} \frac{1}{2^2} \epsilon + \cdots + \frac{1}{M_{n_{p-1}}} \frac{1}{2^{p-1}} \epsilon \]
\[< \frac{1}{M_n} \epsilon \left(\frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^{p-1}} \right) \]
\[< \frac{\epsilon}{M_n}, \]

which is arbitrarily small. The last two inequalities together show that

\[y_{n_p} - 1 \text{ can be made arbitrarily small when } p \text{ is odd.} \]

Similarly \(y_{n_p} + 1 \) can be made arbitrarily small when \(p \) is even. Thus the sequence \(\{y_n\} \) is divergent. Moreover, if \(n \leq n_{p+1} \),
Thus \(\{y_n\} \) is a bounded divergent sequence, and \(y_n = C(x_n) \), where \(\{x_n\} \) is a null sequence.

Hence \(B[Q(x_n)] = (BQ)(x_n) = C(x_n) = y_n \). Let \(Q(x_n) = \xi_n \). Now since \(||Q|| < \infty \) and \(\xi_n, k \to 0 \) as \(n \to \infty \) for every fixed \(k \), it follows that \(Q \) transforms every null sequence into a null sequence. Thus \(\{\xi_n\} \) is a null sequence and \(B(\xi_n) = y_n \). Hence \(A(y_n) = \xi_n \), and \(A \) sums the bounded divergent sequence \(\{y_n\} \) to the limit zero.

The theorem is now proved.

For \(Q = I \), Theorem II follows. For, in this case, \(M_n = \sum_{k=1}^{n} |b_{n,k}| \).

It is obvious that the sequence \(\{M_n\} \) is unbounded; for if \(M_n < M \) for every \(n \), \(B \) would transform every convergent sequence into a bounded sequence. This would imply that all the divergent sequences which are summable-\(A \) are bounded. This is impossible, as already mentioned.

Corollary. The theorem still holds if all but a finite number of the columns of \(C \) form bounded sequences.

If all but the first \(N \) columns are bounded, we put \(x_k = 0 \) (\(k \leq N \)). Define \(\{M_n\} \) by the equation \(M_n = \sum_{k=N+1}^{n} |c_{n,k}| \) (\(n > N \)), and with slight modifications the proof proceeds as before.

Examples. The matrix \(A \), already quoted, obtained by modifying the \((C, 1)\) matrix, has reciprocal \(B \) given by

\[
\begin{align*}
b_{2n,3n} &= 1, & b_{3n-1,3n-1} &= 3n - 1, & b_{2n-1,3n-2} &= -(3n - 2), \\
b_{2n-2,3n-2} &= 3n - 2, & b_{2n-2,3n-3} &= -1, \\
b_{2n-2,3n-4} &= -(3n - 4), & b_{n,k} &= 0 \text{ otherwise.}
\end{align*}
\]

\(B \) is not regular, and every column of \(B \) tends to zero. The conditions of Theorem II are satisfied.

* See, e.g., R. G. Cooke [1, p. 64].
P. Vermes has suggested the following example of a matrix which satisfies the conditions of Theorem III.

Let U be the matrix for which $u_{n+1,n} = 1$, $u_{n,k} = 0$ otherwise. Take $A = 2^{-p}(I + U)^p$, p being a positive integer ≥ 2; then A is regular, and sums the sequence $\{1, 0, 1, 0, 1, 0, \cdots \}$ to $1/2$. $B = 2^{p}(I + U)^{-p}$ is not regular and its columns are not bounded. Take $Q = (I + U)^{p-1}$; then $\|Q\| = 2^{p-1}$ and Q has zero column limits. Thus $C = BQ = 2^{p}(I + U)^{-1}$, which has bounded columns, and $\|C\| = \infty$.

I am unable to prove that the conditions of Theorem III are also necessary.

In conclusion I should like to thank Dr. R. G. Cooke and Dr. P. Vermes, who read the manuscript, for their helpful suggestions.

References

Queen Mary College, University of London