Lie algebras of type $F$
HTML articles powered by AMS MathViewer
- by Marvin L. Tomber
- Proc. Amer. Math. Soc. 4 (1953), 759-768
- DOI: https://doi.org/10.1090/S0002-9939-1953-0057239-8
- PDF | Request permission
References
- A. A. Albert, A structure theory for Jordan algebras, Ann. of Math. (2) 48 (1947), 546–567. MR 21546, DOI 10.2307/1969128
- E. Cartan, Les groupes projectifs qui ne laissent invariante aucune multiplicité plane, Bull. Soc. Math. France 41 (1913), 53–96 (French). MR 1504700, DOI 10.24033/bsmf.916 —, Les groupes reels simples et continus, Ann. École Norm. vol. 31 (1914) pp. 263-355.
- Claude Chevalley and R. D. Schafer, The exceptional simple Lie algebras $F_4$ and $E_6$, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 137–141. MR 34378, DOI 10.1073/pnas.36.2.137
- Nathan Jacobson, Abstract derivation and Lie algebras, Trans. Amer. Math. Soc. 42 (1937), no. 2, 206–224. MR 1501922, DOI 10.1090/S0002-9947-1937-1501922-7
- N. Jacobson, Cayley numbers and normal simple Lie algebras of type $\textrm {G}$, Duke Math. J. 5 (1939), 775–783. MR 598, DOI 10.1215/S0012-7094-39-00562-4
- N. Jacobson, Derivation algebras and multiplication algebras of semi-simple Jordan algebras, Ann. of Math. (2) 50 (1949), 866–874. MR 30943, DOI 10.2307/1969583
- R. D. Schafer, The exceptional simple Jordan algebras, Amer. J. Math. 70 (1948), 82–94. MR 23816, DOI 10.2307/2371932
- R. D. Schafer, A theorem on the derivations of Jordan algebras, Proc. Amer. Math. Soc. 2 (1951), 290–294. MR 41119, DOI 10.1090/S0002-9939-1951-0041119-6
Bibliographic Information
- © Copyright 1953 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 4 (1953), 759-768
- MSC: Primary 09.1X
- DOI: https://doi.org/10.1090/S0002-9939-1953-0057239-8
- MathSciNet review: 0057239