ON THE SOLUTIONS OF SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

CHOY-TAK TAAM

1. Let \(P(x) \) and \(Q(x) \) be complex-valued Lebesgue-measurable functions defined for all non-negative \(x \), the functions \(1/P(x) \) and \(Q(x) \) being of the class \(L(0, R) \) for every positive \(R \). A solution of the differential equation

\[
(P(x)W')' + Q(x)W = 0
\]

is an absolutely continuous function \(W(x) \) such that \(P(x)W'(x) \) is equal almost everywhere to an absolutely continuous function \(W_1(x) \), say, and that

\[
W_1(x) + Q(x)W = 0
\]

is satisfied for almost all \(x \). In the sequel only those solutions which are distinct from the trivial solution (\(=0 \)) shall be considered.

On the positive \(x \)-axis let \(I \) be an interval which need not be closed or bounded. The equation (1.1) will be called disconjugate on \(I \) if and only if no solution of (1.1) possesses more than one zero on \(I \).

It is the purpose of this note to derive a general criterion (Theorem 1) for the differential equation (1.1) disconjugate on an interval and from which to prove a comparison theorem (Theorem 2). These results generalize those obtained previously by the author for the case \(P(x) = 1 \) [2, Theorems 1 and 9]. When \(P(x) = 1 \) and \(Q(x) \) is real, an interesting discussion of disconjugate differential equations was given by A. Wintner [4].

The method of proof of Theorem 1 is a modification of that employed in [2, Theorem 1].

2. Write

\[
P(x) = p_1(x) + ip_2(x), \quad Q(x) = q_1(x) + iq_2(x),
\]

where \(p_1, p_2, q_1 \) and \(q_2 \) are real. We first prove the following general criterion.

Theorem 1. Suppose that the following conditions are satisfied:

1. \(m = m(x) \) is a real-valued function absolutely continuous on every closed subinterval of \(I \),
2. for some real constants \(j \) and \(k \), \(jp_1 + kp_2 \) is positive on \(I \) and \(1/(jp_1 + kp_2) \) belongs to the class \(L \) on every closed subinterval of \(I \),

Presented to the Society, April 25, 1953; received by the editors March 16, 1953.

876
(3) \(m(x) \) satisfies the inequality

\[
(2.2) \quad m' + m^2/(jp_1 + kp_2) \leq -(jq_1 + kq_2)
\]

almost everywhere on \(I \).

Then (1.1) is disconjugate on \(I \). Furthermore, if \(I \) is closed at least at one end, there is a solution of (1.1) which does not vanish on \(I \).

Proof. Suppose that the theorem is not true. Then there is a solution \(W(x) \) which has at least two zeros \(a \) and \(b \), \(a < b \), in \(I \). We shall show that this leads to contradiction.

Let \(W_1 \) be the absolutely continuous function which is equal to \(PW' \) almost everywhere on \(I \). Write

\[
(2.3) \quad W = u + iv, \quad W_1 = u_1 + iv_1,
\]

where \(u, v, u_1, \) and \(v_1 \) are real. It is clear that

\[
(2.4) \quad u_1 = p_1u' - p_2v', \quad v_1 = p_2u' + p_1v'.
\]

Separating the real and imaginary parts of (1.2), we get

\[
(2.5) \quad u' = -q_1u + q_2v, \quad v' = -q_2u - q_1v.
\]

The equalities in (2.4) and (2.5) hold almost everywhere on \(I \). Let

\[
(2.6) \quad L = juu_1 + vv_1 + k(uv_1 - u_1v) - m(u^2 + v^2).
\]

Differentiating (2.6) and simplifying the result with (2.4) and (2.5), we have

\[
(2.7) \quad L' = (jp_1 + kp_2)(u'^2 + v'^2) - 2m(uu' + vv')
\]

almost everywhere on \(I \). Completing the squares, (2.7) yields

\[
L' = (jp_1 + kp_2)[(u' - mu/(jp_1 + kp_2))^2
\]

\[
+ (v' - mv/(jp_1 + kp_2))^2]
\]

\[- [m' + m^2/(jp_1 + kp_2) + jq_1 + kq_2](u^2 + v^2).
\]

The first term on the right-hand side of (2.8) is positive almost everywhere on \([a, b]\), otherwise \(u \) and \(v \) would be solutions of the differential equation

\[
(2.9) \quad y' = my/(jp_1 + kp_2)
\]

on \([a, b]\), and, since \(u \) and \(v \) vanish at \(a \), \(u \) and \(v \) must vanish identically on \([a, b]\), but this is impossible owing to the fact that \(W \neq 0 \). Integrating both sides of (2.8) from \(a \) to \(b \) and using (2.2), we have clearly
Since L vanishes at a and b, we have contradiction. This proves that W cannot possess two zeros on I and hence (1.1) is disconjugate on I.

If I is closed at the left end with end point a, then the argument above shows that $L(x) \geq L(a)$ for all x on I. Since $jp_1 + kp_2$ is positive, j and k cannot both be zero. Suppose that j is not zero. Let W be a solution with

$$W(a) = 1, \quad W'(a) = \frac{m(a) + 1}{j}.$$

For this solution it is easy to verify that $L(a) = 1$. Hence $L(x) \geq 1$ for all x on I. Consequently, from (2.6), this solution does not vanish on I. The cases that $j = 0$, $k \neq 0$, and I is closed at the right end can be proved similarly. This completes the proof of Theorem 1.

3. In this section, we shall prove a comparison theorem. Consider another differential equation

$$(3.1) \quad (r(x)y')' + f(x)y = 0,$$

where r and f are real-valued functions defined for all non-negative x, r being positive, and $1/r$ and f belonging to $L(0, R)$ for every positive R. On the positive x-axis, let I_0 be an interval which is either closed or open, and if open need not be bounded.

Theorem 2. Suppose that the following conditions are satisfied:

1. (3.1) is disconjugate on I_0,
2. for some real constants j and k, the inequalities $jp_1 + kp_2 \geq r$, $jq_1 + kq_2 \leq f$ hold almost everywhere on I_0.

Then (1.1) is disconjugate on I_0. Furthermore, if I_0 is closed, there is a solution of (1.1) which does not vanish on I_0.

Proof. It is known that if (3.1) is disconjugate on I_0, there exists a real-valued function $m(x)$ which is absolutely continuous on every closed subinterval of I_0 and satisfying the inequality

$$(3.2) \quad m' + m^2/r \leq -f$$

almost everywhere on I_0 [3, Theorem 1]. From (3.2) and condition (2) of the theorem, it is clear that

$$(3.3) \quad m' + m^2/(jp_1 + kp_2) \leq -(jq_1 + kq_2)$$

holds almost everywhere on I_0. The theorem then follows from Theorem 1.

4. In the following theorem, we consider the differential equation
Theorem 3. Suppose that the following conditions are satisfied:

1. j, k and A are real constants,
2. $g = g(x)$ is real-valued, non-negative on $[a, b]$ and belongs to $L(a, b)$,
3. $jp_1 + kp_2$ is positive on $[a, b]$ and $(jp_1 + kp_2)^{-1}$ belongs to $L(a, b)$,
4. (4.1) is disconjugate on $[a, b]$.

Then (1.1) is disconjugate on $[a, b]$.

Proof. Since (4.1) is disconjugate on $[a, b]$, according to [3, Theorem 1], there exists a real-valued function $n(x)$ absolutely continuous on $[a, b]$ and satisfying

\[n' + n^2/(jp_1 + kp_2) \leq -G^2/(jp_1 + kp_2) \]

almost everywhere on $[a, b]$. Let $m = (n - G)/2$. Using (4.2) and (4.3), it is easy to verify that m satisfies (2.2) almost everywhere on $[a, b]$. The theorem then follows from Theorem 1.

Theorem 3 can be easily modified to apply to an open interval, bounded or unbounded.

Theorem 3 is a generalization of a theorem due to P. Hartman [1].

References

The Catholic University of America