THE NUMBER OF SUBGROUPS OF GIVEN INDEX
IN NONDENUMERABLE ABELIAN GROUPS

W. R. SCOTT

Let G be an Abelian group of order $A > \aleph_0$. It has been shown [4, Theorem 9] that there exist 2^A subgroups of G of order A, and that the intersection of all such subgroups is 0. In this paper, this result is improved to the following: If $\aleph_0 \leq B \leq A$ and $A > \aleph_0$, then an Abelian group of order A has 2^A subgroups of index B, and the intersection of all such subgroups is 0. In addition, it is shown that there is a set of 2^A subgroups H_α of index B such that $G/H_\alpha \cong G/H_\alpha'$ for all α, α'.

Baer [1, p. 124] showed that if G is an Abelian p-group which is the direct sum of A cyclic groups of bounded order, then G has 2^A subgroups of index p (here A may equal \aleph_0). The proof in the present paper is accomplished by extending Baer's result in an obvious manner to a wider class of p-groups, and then reducing all other cases to this one.

We shall use $+$ and \sum to denote direct sums, and $o(S)$ to denote the number of elements in S.

Lemma. Let $H \neq 0$ be an Abelian group, and let $G = \sum H_\alpha$, $\alpha \in S$, $H_\alpha \cong H$ for all $\alpha \in S$, $o(S) = A \geq \aleph_0$. Then there are at least 2^A subgroups K_β of G such that $G/K_\beta \cong H$.

Proof. (This proof is the same as Baer's, and is included only for the sake of completeness.) Identify H_α with H. Let ϵ_α be 0 or 1 for each $\alpha, \alpha \in S$. Let K be the set of elements of G such that $h_{\alpha_0} = \sum \epsilon_\alpha h_\alpha$, $\alpha \neq \alpha_0$. Then it is easy to verify that K is a subgroup of G and $G = H_{\alpha_0} + K$. If $\epsilon_\alpha = 0$, then $H_\alpha \subseteq K$, but if $\epsilon_\alpha = 1$, then $H_\alpha \cap K = 0$. Thus all of the K's are distinct, and the lemma is proved.

Presented to the Society, September 3, 1953; received by the editors March 2, 1953.
Theorem. Let G be an Abelian group of order $A > 1$, and let $N_0 \leq B \leq A$. Then

(i) there are exactly 2^A subgroups H_a of index B and order A,
(ii) the intersection of the subgroups in (i) is 0,
(iii) there exist 2^A subgroups $K_{i\beta}$ of index B and order A, such that $G/K_{i\beta} \cong G/K_{j\beta} \cong \sum C_\gamma$ where either

(a) all C_γ are cyclic of prime order, or
(b) all C_γ are p^∞ groups (not necessarily fixed).

Remarks. The condition that $o(H_a) = A$ or $o(K_{i\beta}) = A$ is automatically satisfied by subgroups of index B unless $B = A$. If (ii) is true, then it is clear that there is a set of A subgroups, each of index B and order A, whose intersection is 0. Finally, since there are at most 2^A subgroups of G, (iii) implies (i), hence only (ii) and (iii) need be proved.

Proof. Case 1. $G = \sum C_\gamma$, $\gamma \in S$, $o(C_\gamma) = p$, p a fixed prime. Then $o(S) = A$. By omitting B and retaining A summands, one obtains a subgroup K of index B and order A. By the lemma, K has 2^A subgroups $K_{i\beta}$ of index p in K. The $K_{i\beta}$ are thus of order A and of index B in G, and (iii) is satisfied. Since any given summand could have been omitted in obtaining K, (ii) is satisfied.

Case 2. $G = \sum C_\gamma$, $\gamma \in S$, where C_γ is cyclic of order p^∞. Again $o(S) = A$, and G/pG is of the type considered in Case 1. Hence there are 2^A subgroups $K^*_{i\beta}$ of G/pG as in (iii). Therefore there are 2^A subgroups $K_{i\beta}$ of G satisfying (iii). To obtain (ii), first omit from G one summand containing a nonzero component of a given nonzero element g. Since the group G^* thus obtained has finite index in G, one may then proceed as above.

Case 3. $G = \sum C_\gamma$, $\gamma \in S$, where C_γ is a p^∞ group, p fixed. The proof is nearly identical to that in Case 1.

Case 4. G is a p-group. Then [3, Theorem 6] there exists a pure (= servant) subgroup M of G such that (a) $M = \sum C_\gamma$, $\gamma \in S$, where C_γ is cyclic, and (b) $G/M = \sum D_\delta$, where the D_δ are p^∞ groups. If $\gamma_1, \ldots, \gamma_n \in S$, then $C_{\gamma_1} + \cdots + C_{\gamma_n}$ is a pure subgroup of M since it is a direct summand thereof, consequently $C_{\gamma_1} + \cdots + C_{\gamma_n}$ is a pure subgroup of G. But since it is also of bounded order, we have [2, Theorem 5] (c) $C_{\gamma_1} + \cdots + C_{\gamma_n}$ is a direct summand of G for all $\gamma_1, \ldots, \gamma_n \in S$.

If $o(G/M) = A$, then by (b) and Case 3, (iii) is satisfied for G/M, hence also for G.

If $o(G/M) < A$, then $o(M) = A$, and if V is a set of representatives of the cosets of M, then the subgroup L generated by V has order less than A, and $M \cup L = G$. The summands C_γ containing any com-
ponent of any element of \(M \cap L \) are fewer than \(A \) in number. Hence there exists a subgroup \(N \) of \(M \) such that \(N \supseteq M \cap L \), \(o(M/N) = A \), and \(M/N \) is isomorphic to a direct sum of some of the \(C_\gamma \). Therefore by Case 2, (iii) is true for \(M/N \), and therefore there are \(2^A \) subgroups \(K_\beta^* \) of \(M \) containing \(N \), and therefore \(M \cap L \), such that the factor groups \(M/K_\beta^* \) are as in (iii). It then follows from the isomorphism theorem that (iii) is satisfied for \(G \).

To prove (ii), note that by (\(\gamma \)), any element of \(M \) may be omitted by a subgroup of finite index in \(G \), hence from the above, by a subgroup \(H_a \) of index \(B \) and order \(A \). If \(o(G/M) > B \), then by (\(\beta \)) and Case 3 (perhaps for a cardinal smaller than \(A \)), any nonzero element of \(G/M \) may be omitted by a subgroup of order \(o(G/M) \) and of index \(B \) in \(G/M \), hence any element of \(G \) outside of \(M \) may be omitted by a subgroup of order \(o(G/M) \) and of index \(B \) in \(G \). The same is true if \(o(G/M) = B = A \). If \(o(G/M) < B \) or \(o(G/M) = B < A \), then any subgroup of \(G \) of order \(A \) and index \(B \) in \(M \) (omit \(B \) and keep \(A \) summands \(C_\gamma \) in (\(\alpha \))) has the property of omitting all elements outside \(M \) and of having the right order and index in \(G \).

Case 5. \(G \) is periodic. Then \(G = \sum G_p \), where \(G_p \) is the \(p \)-component of \(G \), and \(A = \sum o(G_p) \). Let

\[
\begin{align*}
S_1 &= \{ p \mid o(G_p) \leq N_0 \}, \\
S_2 &= \{ p \mid o(G_p) > N_0, \text{ and (iii) (a) holds for } G_p \}, \\
S_3 &= \{ p \mid o(G_p) > N_0, \text{ and (iii) (a) does not hold for } G_p \}, \\
N_i &= \sum_{p \in S_i} G_p, \quad i = 1, 2, 3.
\end{align*}
\]

Then either \(o(N_2) = A \) or \(o(N_3) = A \). Now if \(p \in S_2 \), then by Case 4, \(G_p \) has \(2^{o(G_p)} \) subgroups \(K_{p, \gamma} \) of order \(o(G_p) \) and index \(\min (o(G_p), B) \) such that the \(G_p/K_{p, \gamma} \) are as in (iii)(a). Hence if \(K = N_1 + N_3 + \sum K_{p, \gamma}, p \in S_2 \), then \(G/K \) is isomorphic to a fixed product of type (a) for all choices of \(K \), and \(K \) is of order \(A \) and of index \(\min (o(N_2), B) \) in \(G \). There are

\[
\prod_{p \in S_2} 2^{o(G_p)} = 2^{\sum_{p \in S_1} o(G_p)} = 2^{o(N_2)}
\]

such \(K \). Similarly there are (at least) \(2^{o(N_3)} \) \(K_\beta \) such that \(K_\beta \) is of order \(A \), of index \(\min (o(N_3), B) \) in \(G \), and such that \(G/K_\beta \) is of type (b). Hence (iii) is satisfied, since either \(o(N_2) \) or \(o(N_3) \) equals \(A \).

To prove (ii), let \(g \in G \) have component \(g_{p_0} \neq 0 \). If \(o(G_{p_0}) < B \), or \(o(G_{p_0}) = B < A \), then omit the summand \(G_{p_0} \) from \(G \), and find a subgroup of order \(A \) and of index \(B \) in the resulting \(G^* \). If \(o(G_{p_0}) > B \) or \(o(G_{p_0}) = B = A \), then by Case 4, there exists a subgroup \(K_{p_0} \) of \(G_{p_0} \)
of index B in G_{p_0} and, in case $B=A$, of order A, which omits g_{p_0}. Then $K_{p_0} + \sum G_p$, $p \neq p_0$, omits g and has the required properties. Thus (ii) holds.

Case 6. G is not periodic. Let $F = \{f_a\}$ be a maximal independent set of elements of G. Let L_k, $k=2, 3, \ldots$, be the subgroup generated by the maximal independent set of elements $\{k f_a\}$. If $o(F) < A$, then $o(L_k) < A$ and $o(G/L_k) = A$. If $o(F) = A$, then the f_a lie in distinct cosets of L_k, so again $o(G/L_k) = A$. But G/L_k is periodic, and therefore by Case 5, (iii) is true, and in (ii), $\cap H_a \subseteq L_k$. Since $\cap L_k = 0$, $k=2, 3, \ldots$, (ii) also holds.

Bibliography

University of Kansas