ON PARACOMPACT SPACES

CHUNG-TAO YANG

1. Stone has proved that a space is fully normal T_1 if and only if it is paracompact T_2. If throughout his proof T_1 is deleted and T_2 is replaced by T_4 (normality), we obtain that a space is fully normal if and only if it is paracompact T_4. In this note we prove that T_2 can also be replaced by any one of the following:

T'. Every two points with disjoint closures have disjoint neighborhoods.

T'_2. For each point x and neighborhood U of x there is a neighborhood V of x whose closure is contained in U.

LT_4. Every point has a neighborhood whose closure is normal.

Moreover, we shall also study a natural decomposition of a space with certain properties and prove that a space is paracompact T_4 if and only if it has a retract which is paracompact T_2 and meets every non-null closed set.

The following terminology will be used.

Property *. If x, y, z are any three points such that $x \cap y \neq \emptyset$ and $x \cap z \neq \emptyset$, then $y \cap z \neq \emptyset$.

**Property **. Every point has a compact closure.

We remark that

1. $T_2 \rightarrow T_2$ and $T_3 \rightarrow T_3$.

2. $T_4 \rightarrow LT_4 \rightarrow T'_3 \rightarrow T'_2 \rightarrow \text{property *}$.

2. Theorem 1. In a paracompact space, T'_2, T'_3, LT_4 and T_4 are equivalent.

Proof. It is immediate that T_4 implies T'_2, T'_3, and LT_4. To prove that T'_2 plus paracompactness implies T'_3 and that T'_3 plus paracompactness implies T_4 we can simply follow Dieudonné's proof with T_2 and T_3 replaced by T'_2 and T'_3 respectively. For any paracompact LT_4 space there is a locally finite open covering, say $\{ U_a \}$, such that each $\overline{U_a}$ is normal. Since $\{ U_a \}$ is still locally finite, the un-
proved part of Theorem 1 follows from the following more general result.

Lemma. A space which is covered by a locally finite system of normal closed sets is normal.

Proof. Let E, F be disjoint closed sets in a topological space X covered by a locally finite system of closed normal sets A_a. For each α, there exist, by the normality of A_a, open sets U_a, V_a in X such that

$$E \cap A_\alpha \subseteq U_\alpha, \quad F \cap A_\alpha \subseteq V_\alpha, \text{ and } U_\alpha \cap V_\alpha \cap A_\alpha = \emptyset.$$

Now we define

$$P(x) = X - \bigcup \{A_\alpha : A_\alpha \ni x \}, \quad x \in X;$$
$$Q(x) = \bigcap \{U_\alpha : A_\alpha \ni x \}, \quad x \in E;$$
$$R(x) = \bigcap \{V_\alpha : A_\alpha \ni x \}, \quad x \in F.$$

It follows by the local finiteness of the system $\{A_\alpha\}$ that $P(x)$, $Q(x)$, and $R(x)$ are open. Let

$$U = \bigcup \{P(x) \cap Q(x) : x \in E\}, \quad V = \bigcup \{P(x) \cap R(x) : x \in F\}.$$

Then U, V are disjoint neighborhoods of E, F.

Remark. We can show by examples that in a pointwise paracompact space, $T_\mathcal{I}'$, $T_\mathcal{I}$, $LT_\mathcal{I}$, and $T_\mathcal{I}$ are not equivalent to one another.

Corollary. The product of a paracompact T_4 space and a compact T_4 space is paracompact T_4.

To prove this corollary we have only to observe that the product of a paracompact space and a compact space is paracompact\footnote{This is suggested by the referee as a known but unpublished result.} and that the product of two T_2' spaces is T_2'.

3. Given any space X with property \ast we can define an equivalence relation such that two points x, y of X are equivalent if and only if $x \cap y \neq \emptyset$. This relation yields a decomposition D of X, that is, a system of sets, pairwise disjoint, whose union is X and such that two points of X are contained in a same member of D if and only if they are equivalent. Denote by ϕ the projection of X onto D, i.e., the function of X into D such that $f(x) = \phi$ if $x \in \phi$. There is a topology on D such that a subset G of D is open if and only if $\phi^{-1}(G)$ is open. D with this topology is the natural quotient space of X. If X is T_4 and then

\footnote{Cf. J. Dieudonné, loc. cit.}
has property *, the natural quotient space of X agrees with one constructed by Čech.7 Throughout the rest of this note, D and ϕ always denote the natural quotient space and the projection for space X provided X has property *.

Lemma. Let X be a space with property * and property **.

(3) Whenever $p \in D$, $\phi^{-1}(p)$ contains a smallest non-null closed set F_p. $F_p = \bar{x}$ for $x \in F_p$.

(4) Every open set which meets F_p contains $\phi^{-1}(p)$. Hence for any $x \in X$, if \bar{x} is covered by a system of open sets, \bar{x} is contained in one of them.

(5) If E, F are disjoint closed sets in X, then $\phi(E) \cap \phi(F) = \emptyset$.

Proof. Fix $p \in D$ and let $x_0 \in \phi^{-1}(p)$. Clearly $\{ \bar{x} \cap x_0 : x \in \phi^{-1}(p) \}$ is a system of closed sets in \bar{x}_0 and it has, by property *, the finite intersection property. It follows by property ** that

$$F_p = \cap \{ x : x \in \phi^{-1}(p) \} = \cap \{ \bar{x} \cap \bar{x}_0 : x \in \phi^{-1}(p) \}$$

is a non-null closed set contained in $\phi^{-1}(p)$. For any non-null closed set F contained in $\phi^{-1}(p)$, we have $F \supseteq \bar{x} \supseteq F_p$ whenever $x \in F$. Hence F_p is the smallest. If $x \in F_p$, then $\bar{x} \subseteq F_p \subseteq \bar{x}$. Hence (3) is proved.

By construction $F_p \subseteq \bar{x}$ for each $x \in \phi^{-1}(p)$. Hence, if U is open and meets F_p, U meets $\{ x \}$, i.e., U contains each $x \in \phi^{-1}(p)$, proving that $\phi^{-1}(p) \subseteq U$. If $x \in X$ and \bar{x} is covered by a system U of open sets, then some open set of U meets F_p with $p = \phi(x)$, and hence contains \bar{x}. This proves (4).

If E and F are disjoint closed sets in X, then for $x \in E$ and $y \in F$, $\bar{x} \cap y \subseteq E \cap F = \emptyset$ and so $\phi(x) \neq \phi(y)$. Hence $\phi(E) \cap \phi(F) = \emptyset$, proving (5).

Lemma. Let X be a T_δ space with property **.

(6) ϕ is closed.

(7) Given any open covering $\{ U_a \}$ of X, $\{ D - \phi(X - U_a) \}$ is an open covering of D.

(8) D is T_3 (i.e., T_2 and T_3).

(9) D is T_3 (i.e., T_2 and T_3) or LT_3 (i.e., T_2 and LT_3) according as X is T_4 or LT_4.

Proof. Let F be a closed subset of X. Given any point p of $D - \phi(F)$ there is, by (3), a smallest non-null closed set F_p contained in $\phi^{-1}(p)$. Take a point p_x of F_p; there is, by T_δ', a neighborhood V_p of x_p whose closure is contained in $X - F$. Therefore, by (4) and (5), $\phi^{-1}(p) \subseteq V_p \subseteq \bar{V}_p \subseteq X - \phi^{-1}(D - \phi(F))$. Hence $\phi^{-1}(D - \phi(F))$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
= \bigcup \{ V_p : p \in D - \phi(F) \} is open and so \(\phi(F) \) is closed. This proves (6).

Given any open covering \(\{ U_a \} \) of \(X \), \(\{ D - \phi(X - U_a) \} \) is a system of open sets in \(D \) by (6). For each \(p \in D \) there is, by (4), some \(\alpha \) such that \(\phi^{-1}(\alpha) \subset U_a \) and so \(p \in D - \phi(X - U_a) \). Hence (7) is proved.

By (6), \(D \) is a \(T_1 \) space. Therefore \(D \) is \(T_{22} \) if we can show that for a point \(p \) of \(D \) and a neighborhood \(G \) of \(p \) there is a neighborhood of \(p \) whose closure is contained in \(G \). Take a point \(x \) of \(F_p \) and let \(U \) be a neighborhood of \(x \) with \(\overline{U} \subset \phi^{-1}(G) \). Then \(D - \phi(X - U) \) is a neighborhood of \(p \) by (4) and (6) and its closure is contained in \(G \) by (5).

Suppose that \(X \) is \(T_4 \). Given any two disjoint closed subsets \(P, Q \) of \(D, \phi^{-1}(P) \) and \(\phi^{-1}(Q) \) are disjoint closed subsets of \(X \) and they have disjoint neighborhoods \(U \) and \(V \). Applying (6), we can easily see that \(D - \phi(X - U) \) and \(D - \phi(X - V) \) are disjoint neighborhoods of \(P \) and \(Q \), proving that \(D \) is \(T_4 \) and hence \(T_{24} \).

Suppose now that \(X \) is \(LT_4 \). Let \(p \in D \) and \(x \in F_p \); there is, by hypothesis, a neighborhood \(U \) of \(x \) whose closure is normal. By (4) and (6), \(G = D - \phi(X - U) \) is a neighborhood of \(p \). Then there is, by \(T_3 \), a neighborhood \(V \) of \(p \) such that \(\overline{V} \subset G \). Since \(\phi^{-1}(\overline{V}) \subset \overline{U} \) is normal, it follows by the preceding result that \(\overline{V} \) is normal, proving that \(D \) is \(LT_4 \) and hence \(LT_{24} \).

Lemma. Let \(X \) be a pointwise paracompact (paracompact) space.

(10) \(X \) has property **.

(11) If \(X \) is \(T_3' \), then \(D \) is pointwise paracompact (paracompact).

Proof. Fix a point \(x_0 \) of \(X \). Given any system \(\mathcal{U} \) of open sets whose union contains \(x_0 \), \(\mathcal{U} \cup \{ X - x_0 \} \) is an open covering of \(X \) and it admits a point-finite refinement \(\mathcal{B} \). Let \(\mathcal{B}' = \{ V : V \in \mathcal{B}, \ V \cap x_0 \neq \emptyset \} = \{ V : V \in \mathcal{B}, \ V \ni x_0 \} \) and for each \(V \in \mathcal{B}' \) we take a \(U_V \in \mathcal{U} \) such that \(V \subset U_V \). Then \(\mathcal{U}' = \{ U_V : V \in \mathcal{B}' \} \) is a finite subsystem of \(\mathcal{U} \) which covers \(x_0 \), proving the compactness of \(x_0 \). Hence \(X \) has property **.

Given any open covering \(\{ G_a \} \) of \(D \), \(\{ \phi^{-1}(G_a) \} \) is an open covering of \(X \) and it admits, by hypothesis, a point-finite (locally finite) refinement \(\{ U_\beta \} \). By (7), \(\{ D - \phi(X - U_\beta) \} \) is an open covering of \(D \) which is obviously point-finite (locally finite) and refines \(\{ G_a \} \). Hence \(D \) is pointwise paracompact (paracompact).

Theorem 2. A space \(X \) is pointwise paracompact (paracompact) \(T_3' \) if and only if it has a pointwise paracompact (paracompact) \(T_{22} \) retract \(A \) which meets every non-null closed subset of \(X \). Moreover, such a retract \(A \) is \(LT_{24} \) or \(T_{24} \) if and only if \(X \) is \(LT_4 \) or \(T_4 \). Finally, \(A \) is unique up to a homeomorphism and the related retraction is uniquely determined.
Proof. Suppose that X is pointwise paracompact (paracompact) T'4. By (2), and (10), X has property * and property **; it follows by (3) that for each $p \in D$ there is a smallest non-null closed set F_p contained in $\phi^{-1}(p)$. We take, for each $p \in D$, a point x_p of F_p and denote by A the set of these points x_p. Clearly A meets every non-null closed subset of X and ϕ defines a 1-1 mapping ψ of A onto D. For any closed subset F of X, we have $\psi(F \cap A) = \phi(F)$ which is closed by (6). Hence ψ is a homeomorphism. From this result, we obtain a retraction $f = \psi^{-1}\phi$ of X onto A. Moreover, it follows by (8) and (9) that A is T_{23} and that A is T_{24} or LT_4 according as X is T_4 or LT_4.

Conversely suppose that X has a pointwise paracompact (paracompact) T_{23} retract A which meets every non-null closed subset of X. Let f be a retraction of X into A. For any $x \in X$, $\hat{x} \cap A$ is non-null and T_2; therefore it contains exactly one point. From this result, it is easily seen that for any two points x, y of X, $\hat{x} \cap \hat{y} \neq \emptyset$ if and only if $\hat{x} \cap A = \hat{y} \cap A$. Hence property * as well as property ** holds for X, and for each $p \in D$, $\phi^{-1}(p) \cap A$ contains exactly one point contained in F_p. From the latter result, we have, for $x \in X$, $f(x) = f(\hat{x}) = \hat{x} \cap A$. Let $x \in X$ and let U be a neighborhood of \hat{x}. Then there is a neighborhood G of $\hat{x} \cap A$ in A such that $\hat{x} \cap A \subset G \subset \overline{G} \subset A \subset U \cap A$. Hence $f^{-1}(G)$ is a neighborhood of x whose closure is contained in U. This proves that X is T'_4.

If A is T_4, then for any two disjoint closed subsets E, F of X, $E \cap A$ and $F \cap A$ have disjoint neighborhoods G and H in A and so $f^{-1}(G)$ and $f^{-1}(H)$ are disjoint neighborhoods of E and F. Hence X is also T_4. If A is LT_4, then for any $x \in X$, $f(x)$ has a neighborhood G in A whose closure in A is normal. It follows by the preceding result that $f^{-1}(G)$ is a neighborhood of x whose closure is normal. Hence X is also LT_4.

Given any open covering $\{ U_a \}$ of X, $\{ U_a \cap A \}$ is an open covering of A and it admits, by hypothesis, a point-finite (locally finite) refinement $\{ G_\beta \}$. We can easily see that $\{ f^{-1}(G_\beta) \}$ is a point-finite (locally finite) refinement of $\{ U_a \}$. Hence X is pointwise paracompact (paracompact).

According to the above argument, A is homeomorphic to D and hence is unique up to a homeomorphism. Moreover, for any $x \in X$, $\hat{x} \cap A = f(x)$. Hence the retraction f is uniquely determined.

The author is much indebted to the referee for improving several results as well as for simplifying some proofs.

Tulane University and
University of Illinois