1. In previous papers [2; 3], the problem of proving an existence theorem for a certain functional equation was reduced to that of computing the topological degree of a mapping in Euclidean n-space defined by homogeneous polynomials or infinite series. The complex case of the latter problem was solved in [4]. Since the problem is analogous to that of studying the roots of a polynomial equation, we would expect the real case to be more complicated. Here we obtain a result that is an analogue of the theorem that a real polynomial equation of odd degree has at least one real root. Also we describe the solution for the case \(n = 2 \) if the mapping is defined by homogeneous polynomials.

2. We consider the mapping of real Euclidean n-space \(\mathbb{R}^n \) into itself,

\[
M: (x_1, \ldots, x_n) \rightarrow (x_1', \ldots, x_n')
\]

defined by

\[
x_i' = \sum_{m=2}^{\infty} \sum_j a_{j_1} \cdots a_{j_n} x_1^{j_1} \cdots x_n^{j_n} \quad (i = 1, \ldots, n)
\]

where \(\sum_j \) denotes a summation taken over all sets of non-negative integers \(j_1, \ldots, j_n \) such that \(\sum_{q=1}^{n} j_q = m \). The problem is to determine the topological degree at 0 of \(M \). Let \(\mathcal{M} \) be the mapping of complex Euclidean \(\mathbb{C}^n \) into itself that corresponds to \(M \), i.e., \(\mathcal{M} \) is defined by

\[
z_i' = \sum_{m=2}^{\infty} \sum_j a_{j_1} \cdots a_{j_n} z_1^{j_1} \cdots z_n^{j_n} \quad (i = 1, \ldots, n).
\]

Let \(S \) be a sphere in \(\mathbb{R}^n \) with center 0 such that \(d[M, S, 0] \), the topological degree at 0 of \(M \) relative to \(S \), is defined, and let \(\mathcal{S} \) be the corresponding sphere in \(\mathbb{R}^n \), i.e., a sphere in \(\mathbb{R}^n \) with center 0 and radius equal to the radius of \(S \). Suppose first that \(d[\mathcal{M}, \mathcal{S}, 0] \) is defined, i.e., suppose \(\mathcal{M} \neq 0 \) on the surface of \(\mathcal{S} \). We prove:

\[
| d[M, S, 0] | \leq d[\mathcal{M}, \mathcal{S}, 0]
\]

\[
(1)
\]

Received by the editors June 15, 1953.
(2) \[d[M, S, 0] \equiv d[M, S, 0] \pmod{2}. \]

By Lemma 3.1 of [3] (which is a special case of a theorem due to Sard [6]) and the fundamental property of topological degree [1, Deformationssatz, p. 424] there is a real point \(p \) near 0 such that

(a) \[d[M, S, 0] = d[M, S, p], \]
(b) \[d[M, S, 0] = d[M, S, p], \]
(c) The set \(M^{-1}(p) \) is finite.

Let \(q_1, \ldots, q_r \) be the elements of \(M^{-1}(p) \) and let \(J \) be the Jacobian of \(M \). Then

\[d[M, S, p] = \sum_{i=1}^{r} \text{sign}(J(q_i)). \]

Since \(J(q_i) \neq 0 \) for \(i = 1, \ldots, n \), the points \(q_1, \ldots, q_r \) are isolated points in the set \(M^{-1}(p) \). As proved in [4], the topological index of \(M \) at each \(q_i \) is +1. Hence from the properties of topological degree [1, Satz 11, p. 472], it follows that

\[d[M, S, p] = d[M, S - S, p] + r. \]

But since the coefficients in \(M \) are real, it follows easily that \(d(M, S - S, p) \) is a positive, even number. (This is proved in [5].)

Since

\[d[M, S, p] \equiv r \pmod{2}, \]

the proof is complete.

Now suppose \(M = 0 \) at some point on the surface of \(S \). We assume that the coefficients in the series that define \(M \) and \(M \) may be varied slightly so that the following result is obtained: the mappings \(M_1 \) and \(M_1 \) in \(\mathbb{R}^n \) and \(\mathbb{R}^n \), respectively, defined by the new series are such that

(\(\alpha \)) \[d[M, S, 0] = d[M_1, S, 0], \]
(\(\beta \)) \(M_1 \) is different from zero on \(S \), i.e., \(d[M_1, S, 0] \) is defined.

Then applying the preceding argument to \(M_1 \) and \(M_1 \), we obtain:

(3) \[|d[M, S, 0]| = |d[M_1, S, 0]| \leq d[M_1, S, 0]\]

and

(4) \[d[M, S, 0] = d[M_1, S, 0] \equiv d[M_1, S, 0] \pmod{2}. \]

In particular, if \(M \) is defined by homogeneous polynomials, i.e.,

\[x_i' = P_k(x_1, \ldots, x_n) \quad (i = 1, \ldots, n) \]
where P_{k_i} is homogeneous of degree k_i in x_1, \cdots, x_n, then

\begin{equation}
|d[M, S, 0]| \leq \prod_{i=1}^{n} k_i
\end{equation}

and

\begin{equation}
d[M, S, 0] = \prod_{i=1}^{n} k_i \pmod{2}.
\end{equation}

This follows from the preceding paragraphs, and the fact, proved in [4], that the topological index of the mapping in complex Euclidean n-space defined by

$$z_i' = P_{k_i}(z_1, \cdots, z_n) \quad (i = 1, \cdots, n)$$

is $\prod_{i=1}^{n} k_i$.

Results (5) and (6) may also be obtained by using Bezout's Theorem. This was pointed out to me by R. Brauer before the proof given here was obtained.

3. If $n=2$ and the mapping is defined by homogeneous polynomials, a solution of the problem can easily be given. First by varying the coefficients slightly (so slightly that the topological degree relative to the unit circle is not affected) we obtain a mapping M defined by

$$x_1' = P_{k_1}(x_1, x_2) = C_1 \prod_{i=1}^{n} (x_1 - \alpha_i x_2)^{\rho_i},$$

$$x_2' = P_{k_2}(x_1, x_2) = C_2 \prod_{j=1}^{m} (x_1 - \beta_j x_2)^{\eta_j},$$

where C_1, C_2 are real constants. Since C_1 and C_2 affect only the sign of the topological degree, we may disregard them. The topological degree can be determined by investigating the changes of sign of P_{k_1} and P_{k_2} as (x_1, x_2) varies over the boundary of the unit circle. Consequently we may disregard factors $(x_1 - \alpha_i x_2)$ or $(x_1 - \beta_j x_2)$ which appear with even exponents or in which α_i and β_j are complex since none of these contributes to a change of sign of P_{k_1} or P_{k_2}. So we are left with real factors all having exponent one.

Now if there is a pair α_i, α_{i+1} ($\alpha_i < \alpha_{i+1}$) such that no β_j lies between then (i.e., there is no β_j such that $\alpha_i < \beta_j < \alpha_{i+1}$) then the factors $(x_1 - \alpha_1 x_2)$ and $(x_1 - \alpha_{i+1} x_2)$ may be disregarded since they contribute no significant change of sign to P_{k_1}. Similarly for pairs
\(\beta_i, \beta_{i+1}\). Finally if \(\alpha_r\) and \(\alpha_s\) are the smallest and largest of the array of numbers \(\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_m\), then the factors \((x_1 - \alpha_r x_2)\) and \((x_1 - \alpha_s x_2)\) may be disregarded. Similarly, \((x_1 - \beta_r x_2)\) and \((x_1 - \beta_s x_2)\) may be disregarded if \(\beta_r\) and \(\beta_s\) are the smallest and largest.

Now if there are no remaining factors in \(P_{k_1}\) or in \(P_{k_2}\), the topological degree is zero. Otherwise there remain factors containing numbers \(\alpha_1, \ldots, \alpha_w\) and \(\beta_1, \ldots, \beta_w\) where all the \(\alpha\)'s and \(\beta\)'s are distinct and, if the subscript labelling is according to magnitude,

\[
\alpha_1 < \beta_1 < \alpha_2 < \beta_2 < \cdots < \alpha_w < \beta_w
\]

or

\[
\beta_1 < \alpha_1 < \beta_2 < \alpha_2 < \cdots < \beta_w < \alpha_w.
\]

In the first case the degree is \(w\); in the second case \(-w\).

Bibliography

Air Force Cambridge Research Center