The number of locally restricted directed graphs
HTML articles powered by AMS MathViewer
- by Leo Katz and James H. Powell
- Proc. Amer. Math. Soc. 5 (1954), 621-626
- DOI: https://doi.org/10.1090/S0002-9939-1954-0062697-X
- PDF | Request permission
References
- A. Cayley, A memoir on the symmetric functions of the roots of an equation, Philos. Trans. Roy. Soc. London. Ser. A vol. 147 (1857) pp. 489-499.
- F. N. David and M. G. Kendall, Tables of symmetric functions. II, III, Biometrika 38 (1951), 435–462. MR 46741, DOI 10.1093/biomet/38.3-4.435
- Robert L. Davis, The number of structures of finite relations, Proc. Amer. Math. Soc. 4 (1953), 486–495. MR 55294, DOI 10.1090/S0002-9939-1953-0055294-2 E. Forsyth and L. Katz, A matrix approach to the analysis of sociometric data, Sociometry vol. 9 (1946) pp. 340-347. F. Harary, The number of graphs and directed graphs, Bull. Amer. Math. Soc. Abstract 58-6-717.
- Frank Harary and George E. Uhlenbeck, On the number of Husimi trees. I, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 315–322. MR 53893, DOI 10.1073/pnas.39.4.315 D. König, Theorie der endlichen und unendlichen Graphen, Leipzig, 1936.
- Richard Otter, The number of trees, Ann. of Math. (2) 49 (1948), 583–599. MR 25715, DOI 10.2307/1969046 G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. vol. 68 (1937) pp. 145-254. P. V. Sukhatme, On bipartitional functions, Philos. Trans. Roy. Soc. London. Ser. A. vol. 237 (1938) pp. 375-409.
Bibliographic Information
- © Copyright 1954 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 5 (1954), 621-626
- MSC: Primary 09.0X
- DOI: https://doi.org/10.1090/S0002-9939-1954-0062697-X
- MathSciNet review: 0062697