SOME REMARKS ON ν-TRANSITIVE RINGS AND LINEAR COMPACTNESS

KENNETH G. WOLFSOHN

Johnson in [3] has introduced the concept of a ν-transitive ring which generalizes the notion of a dense ring of linear transformations. We give necessary and sufficient conditions that an abstract ring be isomorphic to a ν-transitive ring which contains finite-valued linear transformations. The condition (2) used here is a modification of one used by Baer [1] in his characterization of the endomorphism ring of a primary Abelian operator group. This condition is also related to the linear compactness of a ring considered as a right module over itself. This enables one to conclude that a primitive ring with minimal ideals which is linearly compact (in any topology in which it is a topological ring) is the ring of all linear transformations of a vector space, and that a primitive Banach algebra is linearly compact only when it is finite dimensional.

A ring $E(F, A)$ of linear transformations of the vector space A over the division ring F is called ν-transitive if to every set of less than \aleph_0 elements a_j of A, linearly independent over F, and any set of elements b_j of A, in one-one correspondence with the a_j, there exists a transformation σ in $E(F, A)$, such that $a_j \sigma = b_j$ for all j.

Let K be an abstract ring and P an arbitrary subset thereof. The right ideal of all elements k in K which satisfies $Pk = 0$ shall be called a right annulet. Now let $W = W(K)$ be the class of all right annulets which are cross-cuts of a finite number of maximal right annulets of K. By a W-coset is meant a coset of an ideal in the set $W(K)$. If $E(F, A)$ is any ring of linear transformations and S is a subspace of A, we denote by $R(S)$ the totality of transformations $\sigma \in E(F, A)$ satisfying $S \sigma = 0$.

Theorem. A ring K is isomorphic to a ν-transitive ring containing linear transformations of finite rank if and only if:

1. The socle of K is not a zero ring and is contained in every non-zero two-sided ideal of K.

2. If Q is any set of W-cosets with the finite intersection property, then any subset of Q containing less than \aleph_0 elements has a nonvacuous intersection.

Proof. Condition (1) is necessary and sufficient that K be isomorphic to a dense ring of linear transformations $E(F, A)$, contain-

Received by the editors July 3, 1953 and, in revised form, December 7, 1953.

617
ing linear transformations of finite rank (cf. e.g. [4, Theorem 6.1]). Now assume (2), and let \(\phi \) be an arbitrary linear transformation of \((F, A)\) and \(S \) an arbitrary subspace of \(A \) of rank \(<N\). Let \(\{a_i\} \) denote a basis for \(S \). Since \(E \) is dense, there exist \(\phi_i \in E \) such that \(\phi_i = \phi \) on the one-dimensional subspace \(Fa_i \). An ideal \(J \in W(E) \) if and only if \(J = R(T) \) where \(T \) is a finite-dimensional subspace of \(A \) \([2, p. 19]\). Thus the cosets \(\{R(Fa_i) + \phi_i\} \) are \(W \)-cosets and possess the finite-intersection property by density of \(E \). Hence by (2), there exists \(\sigma \in E \) such that \(\sigma \in R(Fa_i) + \phi_i \) for all \(i \). That is, \(a_i (\sigma - \phi_i) = 0 \), \(a_i \sigma = a_i \phi \), which is \(\nu \)-transitivity.

Assume now that \(E(F, A) \) is \(\nu \)-transitive. Let \(\{R(S_i) + \sigma_i\} \) be \(W \)-cosets with the finite intersection property. It may be assumed without loss of generality that the cardinal number of this set of cosets is less than \(\aleph_\nu \). Then the subspace \(S = \sum S_i \) has rank less than \(\aleph_\nu \) since each \(S_i \) is finite-dimensional. By Zorn's Lemma, any set of generators of \(S \) contains a basis of \(S \), and we can therefore find a basis \(\{u_i\} \) of \(S \) such that each \(u_i \) is contained in at least one \(S_i \). For each \(i \), select one \(S_i \) containing \(u_i \), and find by \(\nu \)-transitivity \(\sigma \in E \) such that \(u_i \sigma = u_i \sigma_i \) for each \(i \) (where \(\sigma_i \) is the linear transformation associated with the \(S_i \) containing \(u_i \)). If \(u_i \) is also contained in \(S_j \), then \(u_i \sigma = u_i \sigma_j \) since the finite intersection property of \(\{R(S_i) + \sigma_i\} \) implies \(\sigma_i = \sigma_j \) on \(S_i \cap S_j \). We must prove \(\sigma = \sigma_{i_0} \) on \(S_{i_0} \) for any \(i_0 \). Let \(x \in S_{i_0} \) and write

\[
x = \alpha_1 u_{i_1} + \alpha_2 u_{i_2} + \cdots + \alpha_n u_{i_n},
\]

Then \(x \sigma = \sum \alpha_j (u_i \sigma_j) \). By the finite intersection property, we can select \(\tau \) in \(\bigcap_{i_0}^n (R(S_{i_j}) + \sigma_{i_j}) \). Since \(\tau = \sigma_{i_0} \) on \(S_{i_0} \), we have \(x \tau = x \sigma_{i_0} \).

But \(x \tau = \sum \alpha_j (u_i \tau) = \sum \alpha_j (u_i \sigma_i) = x \sigma \). Hence \(x \sigma = x \sigma_{i_0} \), so that \(\sigma \in \bigcap (R(S_i) + \sigma_i) \), completing the proof.

If a ring \(E(F, A) \) is \(\nu \)-transitive for every ordinal \(\nu \) it must be the ring \(T(F, A) \) of all linear transformations of \((F, A)\). Hence the latter ring may be characterized as a ring satisfying (1) and (2) Any set of \(W \)-cosets with the finite intersection property has a nonvacuous intersection.

The condition (2) is essentially the same as (VII) used by Baer in \([1]\).

If \(K \) is a topological ring it shall be called \textit{linearly \(\nu \)-compact} if (2) holds where \(W \)-cosets are replaced by cosets of closed right ideals. It is \textit{linearly compact} if linearly \(\nu \)-compact for all \(\nu \). (Cf. \([5]\)).

The proof of the theorem implies that a primitive ring which is linearly compact in any topology which makes \(R(S) \) (for \(S \) a one-
dimensional subspace) closed must be the ring of all linear transformations of a vector space. This would be true in particular if maximal ideals were closed ($R(S)$ is always maximal), or if the ring contained minimal ideals. For in the latter case $R(S)$ is an annulet [2, p. 19] and thus closed in any topology making the ring a topological ring. Suppose K is a primitive and linearly compact Banach algebra. Then K is continuously isomorphic to a dense and linearly compact algebra of bounded operators in a Banach space. Since $R(S)$ is closed, the algebra of operators contains all linear transformations of the space. But unless the space is finite-dimensional this would include transformations which are not continuous, an obvious contradiction.

The rings $T(F, A)$ which occur as linearly compact primitive rings need not satisfy the minimum condition. For if (F, A) is infinite-dimensional, the ring $T_\nu(F, A)$ (the ring of all linear transformations of (F, A) of rank less than \aleph_ν) is linearly ν-compact in the finite topology. This can be seen as follows: In this topology all closed right ideals have the form $R(T)$, for T a subspace of (F, A) [2, p. 20]. Now assume $\{R(S_i) + \sigma_i\}$ has rank less than \aleph_ν and possesses the finite intersection property. As in proof of the theorem, there exists $\sigma \in T(F, A)$ such that $\sigma = \sigma_i$ on each S_i, so that $\sigma \in \bigcap (R(S_i) + \sigma_i)$. Although $S = \sum S_i$ is of arbitrary rank r, we have

$$r(S\sigma) = r((\sum S_i)\sigma) \leq \sum r(S_i\sigma_i) < \aleph_\nu,$$

since $\sigma_i \in T_\nu(F, A)$ and therefore $S_i\sigma_i$ has rank less than \aleph_ν. Put $A = S \oplus Q$ and let σ' be that transformation in $T(F, A)$ which agrees with σ on S and satisfies $Q\sigma' = 0$. Then $r(A\sigma') = r(S\sigma)$ so that $\sigma' \in T_\nu(F, A)$, and since it agrees with σ on S we have $\sigma' \in \bigcap (R(S_i) + \sigma_i)$, which completes the proof.

As a special case, we have that $T(F, A)$ is linearly compact in the finite topology. It is of course an easy matter to construct examples of ν-transitive rings which are not linearly ν-compact in the finite topology.

References

Rutgers University