ON COMBINATORIAL ARRANGEMENTS

KULENDRA N. MAJUMDAR

An arrangement of objects of v different varieties into b blocks (or sets) such that (i) no two blocks are identical (i.e. contain the same varieties), (ii) a variety occurs at most once in a block, (iii) any pair of varieties occurs together in λ blocks, $\lambda \neq 0$, (iv) every block contains k varieties, $k < v$, is called a balanced incomplete block design. These designs are of great use in applied statistics.

From (i), (ii), (iii), and (iv) it easily follows \[1\] that (v) all the varieties occur in the whole design an equal number of times, r, say, where $r = \lambda(v - 1)/k - 1$. But it is not difficult to see by constructing examples that the conditions (i), (ii), (iii), and (v) in general do not imply (iv).

About four years ago, Ryser \[2\] proved an interesting result (given here in an essentially equivalent form) that for symmetrical designs (i.e. designs in which $b = v$) conditions (i), (ii), (iii), and (v) imply (iv). In this note we give an extension of this result. To this end we first prove a general result on matrices given in Theorem 1. By column sum we shall mean the sum of the elements in a column.

Theorem 1. If two conformable matrices A, B (whose elements may belong to any given field) are such that

(i) column sums of C, where $C = AB$, are equal, to c say,
(ii) column sums of B are equal to, say b, then any column sum of A is c/b provided the rank of B is equal to the number of its rows.

Let A and B be $m \times r$ and $r \times n$ matrices respectively. Since rank $B = r$, $n \geq r$. Denote by 1 the unit element of the field. Pre-multiply the relation $AB = C$ by a row matrix composed of m 1's. On using (i) of this theorem we get

$$[s_1, s_2, \ldots, s_r]B = [c, c, \ldots, c]$$

where s_i denotes the sum of the ith column of A. Transposing the relation we get

$$B' \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_r \end{bmatrix} = \begin{bmatrix} c \\ c \\ \vdots \\ c \end{bmatrix}$$

Received by the editors December 1, 1953

662
The right-hand side of (1) is a column matrix of \(n \) \(c \)'s. Now rank \(B' = \text{rank} \ B = r \) and consequently \(r \) of the \(n \) rows of \(B' \) are linearly independent. Consider the corresponding \(r \) equations involved in (1). As the coefficient matrix is nonsingular, these equations have a unique solution \(s_1, s_2, \ldots, s_r \). Since the sum of the coefficients in any of the \(r \) equations is \(b \) by condition (ii) of this theorem, the unique solution is easily seen to be \(s_1 = s_2 = \cdots = s_r = c/b \). Of course, \(b \) cannot be the null element of the field—otherwise the rank of \(B \) is less than \(r \). This completes the proof.

If the column sums of \(A \) are equal to \(a \), then the equality of the column sums of any of \(B \) and \(C \) implies the equality of the column sums of the other and then \(ab = c \)—without any consideration of rank. This is easy to prove.

We now use Theorem 1 to establish a property of certain combinatorial arrangements. Suppose a “design” satisfies conditions (i) and (ii) of the first paragraph. List the \(v \) varieties in a column and the \(b \) blocks in a row. Construct an incidence matrix \(A \) of the design by putting 1 or 0 in the \((ij)\) position of the matrix according as the \(i \)th variety occurs in the \(j \)th block or not. A design will be called nonsingular if rank \(A \) (or what is the same thing, rank \(AA' \)) is equal to the number of blocks.

Theorem 2. If, in a nonsingular design, all the varieties appear an equal number of times, and if the total number of objects in all the blocks containing any particular variety is a constant, then any two blocks contain the same number of objects.

Let each variety occur \(r \) times in the design. Then the column sums of \(A' \), the transpose of the incidence matrix, are all \(r \). If \(AA' = (\lambda_{ij}) \), \(i, j = 1, 2, \ldots, v \), then \(\lambda_{ii} = r, i = 1, 2, \ldots, v \), and \(\lambda_{ij} \) is equal to the number of blocks in which \(i \)th and \(j \)th varieties occur together. Consider a fixed \(i \). \(\lambda_{ij} \) then can be taken as the number of times the \(j \)th variety appears in the \(r \) blocks containing the \(i \)th variety. So \(\sum_{j=1}^{r} \lambda_{ij} \), which is the column sum of the \(i \)th column of \(AA' \), is equal to a constant, say \(\lambda \), by our assumption. Consequently taking \(B = A' \) in Theorem 1 we get Theorem 2.

A particular case of this theorem immediately extends Ryser's result to symmetrical group divisible designs—a type of designs which are being extensively studied at present [3; 4].

References

