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In many questions concerning the existence of fields over the com-

plex field, with topologies satisfying given compatibility axioms, it is

sufficient to restrict attention to the field C(t) of rational functions

of the indeterminate t over the complex field C. Every division alge-

bra over C, other than C itself, contains a subfield isomorphic to

C(t). It will be shown below that C(t) can be topologised so that addi-

tion and multiplication are continuous operations; this settles a ques-

tion raised by Kaplansky [2, p. 811 ]. If local convexity is not re-

quired, there is already a well known metrisable topology satisfying

the requirements. It is also possible to produce a locally convex

metrisable topology with the required properties. If we postulate a

topology compatible with the linear space structure of C(t), then it

will be shown that if multiplication is to be continuous, the topol-

ogy must not be too coarse. It will be shown also that it must not be

too fine, and that, in fact, in the finest locally convex linear space

topology on C(t), multiplication is not continuous.

1. We consider first the classical theorem usually associated with

the names of Mazur and Gelfand; in a generalised form, due to Arens

[l, Theorem l], this is: Let A be a division algebra over C, with a

topology such that (i) there is a total set of continuous linear func-

tionals; (ii) addition and scalar multiplication are continuous;

(iii) multiplication by an element of A is continuous; (iv) inversion is

continuous. Then A = C. The conditions of the theorem can be re-

laxed in various ways, the proof involving Liouville's theorem re-

maining valid. The following extension is comparatively trivial:

Theorem 1. Let A be a division algebra over C, with a topology such

that

(i') there is one nonzero continuous linear functional;

(ii) addition and scalar multiplication are continuous;

(iii) multiplication (left or right) by an element of A is a continuous

operation;

(iv') for each complex number X0 there is a non-negative integer w(X0)

such that (X — X0)n{(/— X0e)-1 — (/ — Xe)-1} is bounded for all X suffi-

ciently  near Xo;  and there is  a  non-negative integer  n'  such  that
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X~"'(/— Xe)-1 is bounded for all sufficiently large |\|.  (e denotes the

unit of A.)
Then A = C.

Proof. The condition (i') is easily seen to imply (i), given (iii)

and the fact that A is a division algebra. Condition (iv') implies (in

view of the relation

n

(t - Xe)-1 = E (X - Xo)r(/ - Xoe)-'-1
r-0

+ (X - X0)"+1(/ - Xe)-1^ - Xoe)-"-1

and the corresponding formula for large |X|) that if / is not a scalar

multiple of e and u is any continuous linear functional, then

u((t— Xe)-1) is a bounded analytic function of X. The standard argu-

ments can thus be used to give the required result.

Corollary. If A has a norm such that (iii) holds in the associated

topology, then A = C.

Proof. It is clear that (i') and (ii) are satisfied. Since

(/ - Xe)-1 = (/ - X0e)-1 + (X - X0)(* - X0e)-1(/ - Xe)-1,

and multiplication by (/—X0e)-1 is continuous, it follows that

|| (;- Xe)-1)] ^ ||(/- X0e)-1|| + k\\ — Xo I ||(<- Xe)-1||,

whence (/—Xe)-1 is bounded in a neighbourhood of X0. It can be shown

similarly that (/—Xe)-1—»0 as |x|—>«; so condition (iv') of the

theorem is satisfied, with «(X0) =0, n' = 0.

In proving the corollary, no use has been made of completeness in

any way. As proved by Gelfand, separate continuity of multiplica-

tion implies \\tit2\\ ̂ ||Zi||||/2||, in essence; the proof rests on complete-

ness, and hence on a category argument. Arens [l] has shown that if

there is a norm with ||/i/2|| ^||/i||||/2||, then inversion is continuous. So

the result of the corollary is known, although the present method of

proof appears to be new.

The above conditions (i)-(iv) or (i')—(iv') can turn up in various

disguises. For instance: let A be a division algebra over C, containing

a subset B such that (a) Bt±A, Bt^ \o\ ; (b) for each x^A, there is

a nonzero scalar X such that Xx£J3; (c) if x£.B, and |a| ^1, then

ax€£B; if x, y^B then (x+y)/2£.B; (d) for each x&4 there is a

scalar X such that xBC^KB. Then A=C. For, the function N(x)

= inf | a | for x£a.75 will then be a norm on A such that (iii) holds,

and the corollary will be applicable.
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In passing, it may be mentioned that a topological division alge-

bra of Kaplansky's "type V" [3, p. 910] over C must coincide with

C; for the condition that the set B-1 is bounded whenever B is dis-

joint from a neighbourhood of 0 implies condition (iv') of Theorem 1,

with n = n' = 0.

2. We now show that it is possible to introduce a metrisable topol-

ogy in C(t) such that addition, multiplication, and inversion are con-

tinuous. Consider the space M(0, 1) of functions which are almost

everywhere finite and Lebesgue measurable in the interval (0, 1),

with the topology of convergence in measure in (0, 1). Explicitly,

the basic neighbourhoods of 0 will be the sets

N(k,e) =  {f.m{f.\f(t)\ ^ k]  <e}

where m is Lebesgue measure on subsets of (0, 1), and k and e are

arbitrary positive real numbers. In this topology, addition is con-

tinuous (at (0, 0), hence everywhere); given N(k, e) we have

N(k/2, e/2)+N(k/2, e/2)QN(k, e). Multiplication by an element of

M(0, 1) is continuous (at 0, hence everywhere); given/and N(k, e),

choose k' so that m{t: \f(t)\ ^k'} <e/2, and then fN(k/k', t/2)
EN(k, e). Multiplication is continuous at (0, 0); given N(k, e) we

have N(kU2, e/2)N(km, e/2)CN(k, e), and hence, in view of the

previous remarks, multiplication is continuous everywhere. In par-

ticular, scalar multiplication is continuous. Finally, inversion is

continuous; given N(k, e) we have /-1£1+A(&, e) whenever /GI

+ N(k',e), wherek'= ini {k/2, 1/2}, and/"1 exists.

Now regard / as a real variable, and consider the topology induced

on C(t) as a subset of M(0, 1). The continuity of the algebraic opera-

tions is unaffected; and the topology on C(t) is metrisable, since it is

Hausdorff and there is a countable basic set of neighbourhoods.

There can be no nonzero linear functionals on C(t) which are con-

tinuous in the above topology; for if there were one such functional,

we would have C(t) = C, by Theorem 1. It is easy to deduce from this

that there are no nonzero linear functionals on M(0, 1) which are

continuous in the topology of convergence in measure. For, the set

of rational functions of t (in fact, the set of polynomials in t) is dense

(in measure) in M(0, 1).

3. We now produce a locally convex metrisable topology on C(t)

in which addition and multiplication are continuous—in view of the

convexity, addition is automatically continuous, so that we shall

have only the continuity of multiplication to consider. Let us define,

for each positive integer n, a sequence w(n) = { • • • , w_r, • • • ,

w_i, w0, v>i, ■ ■ ■ , w„ ■ ■ ■ ), where
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w-r = (r + l)»<--+i> if r ^ 1;

wo = 1;

W,  =   (S +  l)-('+1)/» if 5  ^   1.

The set of all such sequences will be denoted by 5.

Lemma 1. If «£5, there exists v(E.S such that vrve^ur+s for all in-

tegers r, s. In fact, if u = w(n), we can take v = w(4n).

Proof. The verification of this is rather tedious, but quite straight-

forward if the various cases which may arise (according to the signs

of r, s, and r+s) are treated separately.

Next, let r(t) be any rational function of /, with Laurent expansion

at / = 0, r(t) = Ea^*- F°r anY "G'S'i the series Ef=-°° I a»| u»1S clearly

convergent. Consider the subsets of C(t):

N(u,t) = {r(/):EKI«« <«}

as u varies over all sequences of S, and e over all positive real num-

bers. That these sets can be taken as a basic set of neighbourhoods of

0 in a locally convex Hausdorff linear space topology on C(t) is im-

mediate. Multiplication by an element of C(t) is continuous (at 0,

and hence everywhere); given r(t) = Ea<^* and N(u, e), choose v as in

Lemma 1. Then El'1*!1'* ( = &> sav) 1S finite, and it is easy to verify

that rN(v, e/k)CN(u, e). Multiplication is continuous at (0, 0); v

being as above we have N(v, ell2)N(v, ell2)CZN(u, e). Hence multi-

plication is continuous everywhere. Since there is a countable set of

basic neighbourhoods (the set 51 being countable) the topology is

metrisable.

C(t) is not complete in the above topology; the Cauchy sequence of

rational functions rn(t)= E"-i (s + l)~s°'+1)/-' has no limit in C(t).

4. If in two topologies on C(t) addition and multiplication are con-

tinuous, the same is true of their union; if both are locally convex, so

is their union. It follows that there is on C(t) a unique finest Haus-

dorff topology in which addition and multiplication are continuous;

and a unique finest locally convex Hausdorff topology satisfying the

same conditions.

Assuming a topology compatible with the linear space structure of

C(t), it is clear that if multiplication is to be continuous then the

topology must not be too coarse. In fact, every neighbourhood (of 0)

must contain a neighbourhood N such that sup \a\, for ar(t) (E.N, is

finite for each r(/)GC(/). (In the locally convex case, this means that

there is a basic set of neighbourhoods defined by a family of norms.)

For, let No be a given neighbourhood, other than the whole space
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C(t); let r0(0 (£No- There are neighbourhoods Ai and A2 such that

A1A2CA0. Suppose that sup |«| for ari(t)ENi is not finite; we can

then find a' and B' such that a'ri(t)ENu 3'{ri(t) }~1r0(t)EN2, and

a'B' = l. Then ro(t)EN0, contrary to assumption; hence sup |a|

for ctr(t)ENi is finite for each r(t)EC(t). N0 clearly contains a non-

zero scalar multiple of Ni, which establishes our assertion.

On the other hand, if multiplication is to be continuous, the

topology must not be too fine. We shall show that if C(t) is given

the finest topology compatible with its linear space structure, mul-

tiplication is not continuous. Thus the problem arises of identifying

explicitly the two (possibly equivalent) unique finest Hausdorff

linear space topologies, in which multiplication is continuous. We do

not attempt to discuss this problem here.

It may be remarked that in the finest linear space topology on

C(t), multiplication by a rational function is always continuous, since

if the collection {Nt} of subsets of C(t) can be taken as a basic set of

neighbourhoods of 0 in some linear space topology, so can the collec-

tion \rjNi\ as rj runs through all nonzero rational functions, and Ni

the given collection. The same remark applies with the additional

qualification "locally convex."

Now, every rational function can be expressed uniquely as a finite

sum

/(0   =   E K.rt' +ZZ h.r(t -  X)-'.
rSO X    rSl

Every linear functional on C(t) is of the form

«(/)   =   E ^oo.rMoo.r + JHL h,rUy,r.
r&0 \    rSl

A set B of linear functionals on C(t) is bounded if, for each rational

function /, sup„es |w(/)| is finite. The polar set B" of a bounded

set B of linear functionals will be a neighbourhood of 0 in the finest

(locally convex) linear space topology on C(t). Thus in particular

there is a neighbourhood N such that | b\,i\ ^ 1 for all functions in N

and all X; it is sufficient to take for N the set B°, where B is the set

consisting of all functionals u with M\,i = l for some X, and all other

coordinates zero.

The next lemma is stated in greater generality than is actually

required; we need the result only for real-valued functions of a com-

plex variable.

Lemma 2. Let <p(z) be a real- (or complex-) valued function on a

complete metric space, such that, for each z, <p(z)^0. Let X be the set

of points zQ such that <£(z)—>0 as z—*z0. Then int X is empty (that is,
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X is an "ensemble rare").

Proof. Suppose not. Then there will be a sphere d(z, z0)<«o in

which X is dense; let Zi£X be such that d(za, Zi)<e0/2. Choose

ti<e0/2 such that \(p(z)\ <1 for d(z, Zi)<ti; let z2(EX be such that

d(zu z2)<ei/2. Choose e2<ti/2 so that \<p(z)\ <l/2 for d(z, z2)<«2;

let z3GX be such that d(z2, z3) <e2/2 • • • . Continuing in this way,

we obtain a convergent sequence of points, z0, zx, z2, ■ ■ ■ , with a

limit z', say; we have |<£(z')| <l/« for all n, so that <p(z')=0, con-

trary to assumption.

Corollary. Let Y be the set of points z with the following property:

there exists a positive real number 5(z) such that, for every «>0, there

is a point z*^z with d(z, z*)<e and \cj>(z*)\ ^o(z). Then Y is dense.

For clearly Y and X are complementary.

Theorem 2. In the finest (locally convex) linear space topology on

C(t), multiplication is not continuous.

Proof. Assume that multiplication is continuous. Let iv be a

neighbourhood of 0 such that, for all rational functions in N, | &x,i| ^ 1

for all X. There will be a neighbourhood N' such that N'N'CN; let

cp(\) =sup |a| for a(t— X)-1G/V'. Then <j>(\) is never zero; hence, by

Lemma 2, corollary, there will be a point X0 and a 5>0 such that,

given €>0, there is a point Xt^Xo, with |X—X0| <e and |<A(X)| =^5.

We have

2-l<j>(\o)4>(^)(t - X0)-1(/ - X)-1 £ N'N' for all X;

that is,

2-1<KXo)4>(X)(X0 - X)-1{(/ - X„)-1 - (/ - X)-1} G N.

But, for this function, the coefficient &x,i is clearly unbounded. We

have thus reached a contradiction, and the theorem is proved.

In fact the above proof shows that multiplication is not continuous

in any linear space topology in which B° (as defined above) is a

neighbourhood of 0.
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