and for each particular f the measure may be so chosen that (moreover)

$$\int_B \log |f(x)| \, m_\nu(dx) \geq \log |f(s)|.$$

Naturally, if for some reason there is for some s only one measure satisfying 7.12, then 7.13 holds for that measure.

Bibliography

University of California, Los Angeles

FAMILIES OF CURVES

S. STEIN

Amasa Forrester in [1] proved the following theorem of a mixed Euclidean and topological character. If ϕ is a continuous map without fixed points on the Euclidean n-sphere such that ϕ^2 is the identity, then the chords $P\phi(P)$ for all points P of the sphere completely fill the interior of this sphere.

The object of this note is to generalize this theorem to a purely topological statement.

First we recall the definition of retract. If $B \subseteq A$ are two spaces, then B is a retract of A if there is $r: A \rightarrow B$ which leaves fixed all points of B. (If X and Y are spaces the symbol $f: X \rightarrow Y$ shall denote a continuous map from X to Y.)

Let I denote the unit interval. If $F: B \times I \rightarrow A$ and $t \in I$, define $F_t: B \rightarrow A$ by $F_t(b) = F(B, t)$ for all $b \in B$.

Observation. If $F: B \times I \rightarrow A$ and if B is a retract of A by the map r and if $p, q \in I$, then rF_p is homotopic to rF_q.

In fact such a homotopy is provided by $G: B \times I \rightarrow B$ defined by

Presented to the Society, November 28, 1953; received by the editors October 26, 1953 and, in revised form, February 28, 1954.
\[G(b, t) = rF(b, p + (q - p)t). \]

Clearly \(G_0 = rF_p \) and \(G_1 = rF_q \).

Now let \(E^{n+1} \) be the topological \(n+1 \) dimensional cell and \(S^n \) its boundary (an \(n \) dimensional topological sphere). Now, for any point \(P \in E^{n+1} - S^n \), \(S^n \) is a retract of \(E^{n+1} - \{ P \} \) by the map

\[r: E^{n+1} - \{ P \} \to S^n \]

defined by carrying over the central projection of the Euclidean cell by a homeomorphism. This fact and the observation yield:

Proposition 1. If \(f_i: S^n \to S^n, i = 0, 1, \) are not homotopic and if \(F: S^n \times I \to E^{n+1} \) satisfies \(F(P, i) = f_i(P), i = 0, 1, \) all \(P \in S^n \), then \(F \) is onto \(E^{n+1} \).

Proposition 2 (generalization of Forrester’s theorem). Let \(\phi: S^n \to S^n \) be of period \(p \neq 1 \). Let \(F: S^n \times I \to E^{n+1} \) satisfy (a) \(F(P, 0) = P \) and (b) \(F(P, 1) = F(\phi(P), 1) \). Then \(F \) is onto \(E^{n+1} \).

Proof. Observe first that it is sufficient to prove this for \(p \) prime. For if \(p \) were not prime and \(q \) is a prime dividing \(p \), then the hypothesis of Proposition 2 is satisfied with \(\phi \) replaced by \(\phi^{p/q} \) and the latter is of prime period. In the following proof \(p \) is taken to be prime.

Assume on the contrary that there is a point \(Q \in E^{n+1} - F(S^n \times I) \). By (a), \(Q \in S^n \) and by a previous remark there is a retraction \(r: E^{n+1} \to \{ Q \} \to S^n \). Regarding \(F \) as a map into \(E^{n+1} - Q \) we would have \(rF_0 \) homotopic to \(rF_1 \). Now \(rF_0 \) is the identity map of \(S^n \) (hence of degree 1) while \(rF_1 \) has the property that \((rF_1)\phi = rF_1 \) on account of condition (b).

To conclude the proof it shall be shown that any map \(g: S^n \to S^n \) satisfying \(g\phi = g \) has a degree divisible by \(p \).

By [2] there is a cycle of the form \(c + \phi(c) + \phi^2(c) + \cdots + \phi^{p-1}(c) \) in a generator of \(H^n(S^n, J_p) \). Calling this cycle \(z \) we have \(g(z) = pc = 0 \mod p \). Thus the degree of \(g \) is divisible by \(p \). This concludes the proof of Proposition 2.

Forrester’s family of straight lines may be described by

\[F: S^n \times I \to E^{n+1} \]

where \(F(P, t) \) is the point \(Q \) on the line segment joining \(P \) to \(\phi(P) \) such that \(PQ/P\phi(P) = t/2 \).

If the notion of homotopy is translated into the language of a continuous family of curves then Proposition 2 becomes:

Proposition 2’. If (1) \(\phi: S^n \to S^n \) satisfies the condition stated in Proposition 2 and (2) from each point \(P \) of \(S^n \) there begins one curve of
E^{n+1} so that the curves beginning at P and $\phi(P)$ have the same terminal point and (3) the parametrization of these curves depend continuously on P, then this family of curves fills E^{n+1}.

Proposition 3. Let R^n refer to n dimensional Euclidean space. If for each direction in R^n there is given in a continuous manner precisely one straight line with that direction, then this family of lines fills R^n.

Proof. Compactify R^n to E^n by adding two points at infinity for each direction in R^n. Then apply Proposition 2 or 2' with $p = 2$.

Proposition 4. Let A be a compact subset of R^n. A necessary and sufficient condition that A be a convex set with the property that each support plane has precisely one contact point is that there exists a continuous choice function on the set of $n-1$ dimensional planes, meeting A, with values in A. Moreover any such function is onto A.

Proof. Let A be a convex subset of R^n with the property that each plane of support has one point of contact. Assign to each cross-section its centroid. By Proposition 2 with $p = 2$ it is easy to show that this function is onto A (compare to p. 13 of [3]).

The proof of sufficiency is left to the reader. In a subsequent paper the intersection properties of families of curves will be considered.

Bibliography

