A note on the representations of nilpotent Lie algebras
HTML articles powered by AMS MathViewer
- by Charles W. Curtis
- Proc. Amer. Math. Soc. 5 (1954), 813-824
- DOI: https://doi.org/10.1090/S0002-9939-1954-0064029-X
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 5 (1954), 1001-1001.
References
- G. Birkhoff, Representability of Lie algebras and Lie groups by matrices, Ann. of Math. vol. 38 (1937) pp. 326-332.
C. Chevalley, Théorie des groupes de Lie, vol. II, Paris, 1951.
—, Théorie des groupes de Lie, vol. III, to appear.
- Charles W. Curtis, Noncommutative extensions of Hilbert rings, Proc. Amer. Math. Soc. 4 (1953), 945–955. MR 59254, DOI 10.1090/S0002-9939-1953-0059254-7
- Charles W. Curtis, The structure of non-semisimple algebras, Duke Math. J. 21 (1954), 79–85. MR 61095
- N. Jacobson, Restricted Lie algebras of characteristic $p$, Trans. Amer. Math. Soc. 50 (1941), 15–25. MR 5118, DOI 10.1090/S0002-9947-1941-0005118-0 —, Un généralisation du Théorème d’Engel, C. R. Acad. Sci. Paris vol. 234 (1952) pp. 679-681. E. Witt, Treue Darstellung Liescher Ringe, J. Reine Angew. Math. vol. 176 (1937) pp. 126-140. H. Zassenhaus, Über Liesche Ringe mit Primzahlcharacteristik, Abh. Math. Sem. Hansischen Univ. vol. 13 (1940) pp. 1-100.
- Hans Zassenhaus, Darstellungstheorie nilpotenter Lie-Ringe bei Charakteristik $p>0$, J. Reine Angew. Math. 182 (1940), 150–155 (German). MR 0002849, DOI 10.1515/crll.1940.182.150
- Hans Zassenhaus, Über die Darstellungen der Lie-Algebren bei Charakteristik $0$, Comment. Math. Helv. 26 (1952), 252–274 (German). MR 51831, DOI 10.1007/BF02564305
Bibliographic Information
- © Copyright 1954 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 5 (1954), 813-824
- MSC: Primary 09.1X
- DOI: https://doi.org/10.1090/S0002-9939-1954-0064029-X
- MathSciNet review: 0064029