Finitely Generated Extensions of Difference Fields

Richard M. Cohn

Let \(\mathcal{J}, \mathcal{K}, \mathcal{K}' \) be difference fields such that \(\mathcal{J} \subseteq \mathcal{K} \subseteq \mathcal{K}' \). We shall prove that if \(\mathcal{K}' \) is a finitely generated extension of \(\mathcal{J}, \mathcal{K}' = \mathcal{J}(\alpha_1, \alpha_2, \ldots, \alpha_n) \), then \(\mathcal{K} \) is also a finitely generated extension of \(\mathcal{J} \).

We introduce a new notation for the \(\alpha_i \). Let \(\beta_1, \ldots, \beta_q \) denote a subset of the \(\alpha_i \) annulling no nonzero difference polynomial with coefficients in \(\mathcal{K} \) and such that each \(\alpha_i \) annuls some nonzero difference polynomial with coefficients in \(\mathcal{K}(\beta_1, \ldots, \beta_q) \). We denote the \(\alpha_i \) not included among the \(\beta_i \) by \(\gamma_1, \ldots, \gamma_p, p = n - q \).

Let \(\Lambda \) be the reflexive prime difference ideal in \(\mathcal{K}(\beta_1, \ldots, \beta_q; \gamma_1, \ldots, \gamma_p) \) with the generic zero \(u_i = \beta_i, \ i = 1, \ldots, q; \gamma_j = \gamma_j, \ j = 1, \ldots, p \). We denote a characteristic set of \(\Lambda \) by

\[
(1) \quad A_{10}, \ldots, A_{1k_1}; \ A_{20}, \ldots, A_{2k_2}; \ldots; \ A_{p0}, \ldots, A_{pk_p},
\]

where \(A_{i0} \) introduces \(\gamma_i \). Let \(\mathcal{G} \) be the difference field formed by adjoining the coefficients of the \(A_{ij} \) to \(\mathcal{J} \). Evidently \(\mathcal{G} \subseteq \mathcal{K} \). The result stated above will follow when we show that \(\mathcal{G} = \mathcal{K} \).

We shall describe what we mean by the characteristic sequences \(B_{ij}, i = 1, \ldots, p; j = 0, 1, \ldots, \) of \(\Lambda \) formed from (1). This concept has been previously defined only in special cases.

Let \(t_i \) denote the order of \(A_{i0} \) in \(\gamma_i \). We let \(B_{10} = A_{10} \). Suppose \(B_{10}, \ldots, B_{1,k-1} \) have been defined. Then, if there is an \(A_{ij} \) of order \(t_i + k \) in \(\gamma_i \), we let \(B_{ik} \) be that \(A_{ij} \). Otherwise \(B_{ik} \) is defined as the remainder of the transform of \(B_{1j} \) with respect to the chain \(B_{10}, \ldots, B_{1,k-1} \). It is easy to see that, for any \(r, B_{1r} \) is of order \(t_i + r \) in \(\gamma_i \) and, unless it is equal to some \(A_{ij} \), of the same degree in the \((t_i + r) \)th transform of \(\gamma_i \) as is \(A_{ij} \) in the \((t_i + r) \)th transform of \(\gamma_i \).

Let \(B_{20} = A_{20} \). Suppose \(B_{20}, \ldots, B_{2,k-1} \) have been defined. Then if

Received by the editors March 1, 1954.

1 The brackets \(\langle \ \rangle \) denote field adjunction of the enclosed elements and their transforms so as to form a difference field. Similarly, brackets \(\{ \ \} \) denote ring adjunction of the enclosed elements and their transforms. Field and ring adjunctions in the usual sense are denoted by brackets \(\langle \ \rangle \) and \(\{ \ \} \) respectively. For other terms used see [1] (where the term “basic set” corresponds to our “characteristic set”) and [3].

2 If \(p = 0 \), \(\Lambda \) is the ideal consisting only of 0, and no \(A_{ij} \) are defined.

3 If \(p = 0 \), we define \(\mathcal{G} \) to be \(\mathcal{J} \).

4 Throughout this discussion we form the remainder treating the \(B_{ij} \) not as difference polynomials but as polynomials as in Chapter IV of [2]. The \(\gamma_{ij} \), \(j \geq t_i \), are ordered lexicographically. The remaining \(\gamma_{ij} \) and the \(u_{ij} \) precede them and are ordered among themselves in any convenient way. Of course, only a finite number of indeterminates are present and need be ordered at any step.
there is an A_{2j} of order $t_2 + k$ we let B_{2k} be that A_{2j}. Otherwise B_{2k} is defined as the remainder of the transform of $B_{2,k-1}$ with respect to the chain $B_{10}, \ldots, B_{1r}; B_{20}, \ldots, B_{2,k-1}$, where r is chosen as the least integer such that no transform of y_{10} occurring in $B_{20}, \ldots, B_{2,k-1}$ or the transform of $B_{2,k-1}$ is of order exceeding $t_1 + r$. Proceeding similarly we let $B_{30} = A_{30}$. When $B_{30}, \ldots, B_{3,k-1}$ have been defined, we define B_{3k} as the A_{3j} of the proper order, if such exists, or as the remainder of the transform of $B_{3,k-1}$ with respect to $B_{10}, \ldots, B_{1s}; B_{20}, \ldots, B_{2r}$, where s and r are such that no transform of y_{20} occurring in $B_{30}, \ldots, B_{3,k-1}$ or the transform of $B_{3,k-1}$ is of order exceeding $t_2 + r$, and that no transform of y_{10} occurring in these polynomials or in B_{20}, \ldots, B_{2r} is of order exceeding $t_1 + s$.

Continuing in this way we define the B_{ij}, $i = 1, \ldots, p; j = 0, 1, \ldots$. Each B_{ij} is order $t_i + j$ in y_i, and it is either a polynomial of the characteristic set of Λ which is of this order in y_i and free of y_k, $k > i$, or it is of the same degree in the (t_i+j)th transform of y_i as is $B_{i-1,j-1}$ in the (t_i-1+j)th transform of y_i. Of course, B_{ij} is free of y_k, $k > i$.

Given an integer $r \geq 0$ we let s_p denote the maximum of t_p and r. Let $r_p = s_p - t_p$. Then define $s^{(p-1)}$ to be the maximum of t_{p-1}, r, and the order of the highest transform of y_{p-1} appearing in the polynomials B_{p0}, \ldots, B_{pr_p}, and let $r_{p-1} = s_{p-1} - t_{p-1}$. We define s_{p-2} as the maximum of t_{p-2}, r, and the order of the highest transform of y_{p-2} occurring in $B_{p-1,0}, \ldots, B_{p-1,r_{p-1}}; B_{p0}, \ldots, B_{pr_p}$. Continuing in this way we define successively $s_{p-3}, s_{p-4}, \ldots, s_1$ and let $r_i = s_i - t_i$, $i = 1, \ldots, p$. Then

(2) \[B_{10}, \ldots, B_{1r_1}; B_{20}, \ldots, B_{2r_2}; \ldots; B_{p0}, \ldots, B_{pr_p} \]

is a chain. For s such that no $u_{ij}, j > s$, occurs in (2) we define Λ_{sr} as the prime p. i. (polynomial ideal) in the indeterminates u_{ij}, $i = 1, \ldots, q; j = 0, 1, \ldots, s$, and y_{km}, $k = 1, \ldots, p; m = 0, 1, \ldots, s$, which consists of those polynomials of Λ which involve only these u_{ij} and y_{km}. Then (2) constitutes a characteristic set for Λ_{sr} with B_{ij} introducing y_{i,t_i+j}. The parametric indeterminates of Λ_{sr} corresponding to this choice of characteristic set are those u_{ij} occurring among its indeterminates and the y_{km} with $m < l_m$. We note that all coefficients of the B_{ij} are rational combinations of the coefficients appearing in (1) and their transforms.

Let λ be any element of \mathcal{C}. It will evidently suffice to show that λ is in \mathcal{G}. We choose a positive integer r such that λ is in the field formed by adjoining to \mathcal{F} the α_{ij}, $i = 1, \ldots, n; j = 0, \ldots, r$. Let $s \geq r$ be such that, with the r just chosen, (2) is a characteristic set of

6 Following Chapter IV of [2] we use this term to distinguish ideals of polynomials in the usual sense from difference ideals.
a prime p. By the last remark of the preceding paragraph the coefficients of (2) are in G. Since also $G \subseteq \mathcal{C}$ it is readily seen that (2) is the characteristic set of a prime p with coefficients in G and involving the same indeterminates as Λ_r. Similarly (2) is the characteristic set of a prime p' with coefficients in $G(\lambda)$ and involving the same indeterminates as Λ_r.

We obtain a generic zero of Λ_r, Π, or Π' by putting $u_{ij} = b_{ij}$; $y_{ij} = r_{ij}$ for the appropriate ranges of the subscripts. We shall denote by δ_k, where k ranges over a suitable set of integers, those b_{ij} and r_{ij} of the generic zero which have been equated to the u_{ij} and y_{ij} of the previously described set of parametric indeterminates of Λ_r (which are also, of course, a set of parametric indeterminates for either Π or Π'). The remaining y_{ij} of the generic zero shall henceforth be denoted by e_m, where m ranges over a suitable set of integers.

The degree of $G(\delta_k, e_m)$ with respect to $G(\delta_k)$ is given by the product of the degrees of the polynomials of (2) in the indeterminates of Π which they respectively introduce. We see in the same way that this product is the degree of $G(\lambda)(\delta_k, e_m)$ with respect to $G(\lambda)(\delta_k)$. But the fields $G(\lambda)(\delta_k, e_m)$ and $G(\delta_k, e_m)$ coincide because, by the stipulations concerning r and s, λ is in $G(\delta_k, e_m)$. Hence the degrees of $G(\delta_k, e_m)$ with respect to its two subfields $G(\delta_k)$ and $G(\lambda, \delta_k)$ are equal. Since these degrees are finite it follows that these subfields must be identical. In other words, λ is in $G(\delta_k)$.

We thus see that there exist elements P and Q in $G[\delta_k]$, with P not equal to zero, such that $P\lambda = Q$. Now the δ_k annul no nonzero polynomial with coefficients in $G(\lambda)$. Hence the relation $P\lambda = Q$ must be an identity in the δ_k. By equating coefficients of a suitable power product of the δ_k on both sides of this equation we find $p\lambda = q$, p and q in G, and $p \neq 0$. Hence λ is in G. This completes the proof.

References

Rutgers University

* This follows from the work on pp. 89 and 90 of [2]. The inductive argument given there shows that a generic zero of Π can be constructed by transcendental adjunctions followed by successive algebraic adjunctions of degrees equal to the degrees of the polynomials of the characteristic set in the indeterminates they introduce.