SYMMETRIC POLYNOMIALS WITH NON-NEGATIVE COEFFICIENTS

L. KUIPERS AND B. MEULENBEDL

1. Introduction. Brunn [1] proved a theorem on a determinant (an alternant) the elements of which are elementary symmetric functions of positive variables. This theorem reflected by us in a sharper form and applied to polynomials (Theorem 1) is the basis of further investigation. A special case is Theorem 2, important applications of which are Theorems 3 and 4. In §2 we prove these results and in §3 we give some examples. In §4 the foregoing is applied to absolutely monotonic functions; the result is Theorem 5, a generalization of a theorem of Rosenbloom [2]. In §5 an extension of Theorem 3 is deduced (Theorem 6) by considering a function of two variables.

2. Let S_j be the elementary symmetric function of n variables x_1, x_2, \ldots, x_n, defined by

$$S_j = \sum x_1 x_2 \cdots x_j$$

for $j = 1, 2, \ldots, n$;

$$S_0 = 1; S_j = 0$$

for $j = -1, -2, \ldots$ and $j > n$.

Theorem 1. The determinant $(S_{k_{ij}})$, $i = 1, 2, \ldots, q; j = 1, 2, \ldots, q$, with

$$k_{i,m} - k_{i,m+1} = k(m) > 0,$$

$$k_{m+1,i} - k_{m,i} = k^*(m) > 0,$$

for $i = 1, 2, \ldots, q; m = 1, 2, \ldots, q - 1,$

$\text{can be written as a symmetric polynomial in } x_1, x_2, \ldots, x_n \text{ with non-negative coefficients.}$

Proof. Obviously the determinant in question is a symmetric polynomial in the considered variables.

For $n = 1$ the determinant equals zero or unity or a power of x_1. Now applying induction we assume the assertion to be true for $n - 1$ and prove the truth for the case n. Therefore we put

$$S_k = S'_k + x_n S'_{k-1},$$

where S'_k differs from S_k in referring to the variables with x_n left out. Substituting (2) in the determinant we can expand this in increasing powers of x_n, hence

Received by the editors May 12, 1952 and, in revised form, April 4, 1954.

88
(3) \[(S_{kij}) = \sum_{k=0}^{q} A_k x_n^k, \]

where \(A_k \) is a sum of determinants the elements of which are elementary symmetric functions of \(x_1, x_2, \ldots, x_{n-1} \). The element indices satisfy (1), hence from our assumption it follows that each \(A_k \) is a polynomial in \(x_1, x_2, \ldots, x_{n-1} \) with non-negative coefficients. Because of (3) our assertion is proved.

An immediate consequence of Theorem 1 is

Theorem 2. Let \(\sigma_j = (-1)^j S_j \). Then the determinant

\[(\sigma_{m+i-k_j}) \ (i = 0, 1, \ldots, q; j = 0, 1, \ldots, q; 0 = k_0 < k_1 < \cdots < k_d) \]

multiplied by the factor \((-1)^M \), where

\[
M = m + (m - k_1) + (m - k_2) + \cdots + (m - k_0) + 1 + 2 + \cdots + q,
\]

is expressible as a symmetric polynomial in \(x_1, x_2, \ldots, x_n \) with non-negative coefficients.

Now we prove the following

Theorem 3. Let

\[f_{h+1}(x) = a_{h0} + a_{h1}x + \cdots + a_{h,n+p}x^{n+p} \quad (h = 0, 1, \ldots, n - 1), \]

where \(n \geq 2 \) and \(p \geq 0 \), be \(n \) polynomials with real coefficients such that all determinants \(D \) of the \(n \)th order, taken from the matrix \(|a_{ij}|, i = 0, 1, \ldots, n - 1; j = 0, 1, \ldots, n + p \), are non-negative.

If for \(n \) variables \(x_1, x_2, \ldots, x_n \), with \(x_i \neq x_j \) for \(i \neq j \), we put \(V = V(x) = \text{the determinant} (x_i), i = 1, 2, \ldots, n; j = 0, 1, \ldots, n - 1 \), then the expression

\[(f_i(x_j))/V. \]

can be written as a symmetric polynomial in \(x_1, x_2, \ldots, x_n \) with non-negative coefficients.

Proof. From a theorem of Garbieri [3] it follows that (4) is equal to the determinant of \((n+p+1) \)th order

\[
(B_{ij}, B_{ij} = a_{ij} \quad (i = 0, 1, \ldots, n - 1; j = 0, 1, \ldots, n + p),
\]

\[
B_{ij} = \sigma_{i-j} \quad (i = n, n + 1, \ldots, n + p; j = 0, 1, \ldots, n + p),
\]

where \(\sigma_j \) is defined in Theorem 2. By expanding (5) in terms of the \((p+1) \)-line minors of the last \(p+1 \) rows (let \(i \) denote the rows) we see that \((B_{ij}) \) is the sum of a number of expressions each of which is
a product of a determinant D, the corresponding determinant (σ_{n+i-k_j}), $i=1, 2, \ldots, p+1; j=1, 2, \ldots, p+1$; $1 \leq k_1 < k_2 < \cdots < k_{p+1} \leq n+p+1$, and the factor $(-1)^{\mathcal{S}}$ where $\mathcal{S}=(n+1)+(n+2)+\cdots+(n+p+1)+k_1+k_2+\cdots+k_{p+1}$. Now the exponent M (see Theorem 2) related to this last determinant is equal to $(n+1-k_1)+\cdots+(n+1-k_{p+1})+1+2+\cdots+p$, so that $M \equiv \mathcal{S} \pmod{2}$.

From this conclusion and Theorem 2 the assertion follows.

A special case of Theorem 3 (put $f_h(x)=x^{k_h}$, $h=1, 2, \ldots, n$) is

Theorem 4 (P. C. Rosenbloom [2, p. 459]). If k_1, k_2, \ldots, k_n are integers with $0 \leq k_1 < k_2 < \cdots < k_n$, then

\[(x_i^j)/V; \quad i, j = 1, 2, \ldots, n,\]

is a symmetric polynomial in x_1, x_2, \ldots, x_n with non-negative coefficients.

Remark. The last result can also be obtained by application of a theorem of H. Naegelsbach [4].

Acting in this way we find for the expression (6) the determinant

\[
\begin{vmatrix}
S_n & S_{n-1} & S_{n-k_1+1} & S_{n-k_1-1} & \cdots & S_{n-k_n+1} \\
0 & S_n & S_{n-k_2} & S_{n-k_2+1} & \cdots & S_{n-k_n+2} \\
& \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \cdots & \cdots & S_1
\end{vmatrix}
\]

whose elements satisfy the conditions of Theorem 1.

3. Examples. 1. If for $h=1, 2, \ldots, n; p \geq 0$,

\[f_h(x) = \sum_{i=0}^{n+p} a_i^h x^i \quad \text{with } 0 < a_1 < \cdots < a_n,
\]

then $(f_i(x))/V; i, j=1, 2, \ldots, n$, is a symmetric polynomial in x_1, x_2, \ldots, x_n with non-negative coefficients.

This follows from the fact that the determinants of the nth order taken from the matrix

\[
\begin{vmatrix}
a_i^{j-i-2}
\end{vmatrix}; \quad i = 1, 2, \ldots, n; j = 1, 2, \ldots, n+p+1,
\]

divided by the positive number $V(a)$ are polynomials in the positive a_1, a_2, \ldots, a_n with non-negative coefficients, as follows from Theorem 4.

2. If the determinants of the nth order taken from the matrix $|a_{ij}|$, $i=1, 2, \ldots, n; j=1, 2, \ldots, n+p$, are positive, and if
where the k_h are integers with $0 \leq k_1 < \cdots < k_n$, then $(A_{ij})/V^2$ $(i, j = 1, 2, \cdots, n)$ is a symmetric polynomial with non-negative coefficients.

Proof. Putting $f_i(x) = \sum_{q=0}^{n+p} a_{iq}x^q$ $(i = 1, 2, \cdots, n)$, we have

$$A_{ij} = \sum_{h=1}^n x_i^h \sum_{q=0}^{n+p} a_{iq}x_h^q = \sum_{h=1}^n x_i^h f_i(x_h),$$

so that

$$(A_{ij}) = (x_i^{k_j})(f_i(x_j)) \quad (i, j = 1, 2, \cdots, n).$$

Application of Theorem 3 completes the proof.

4. Theorem 5. If $f(x)$ and $g(x)$ are power series with non-negative coefficients converging in the interval $0 \leq x < a$, then the expression

$$(7) \quad (-1)^{n-1} \det \left| x_1^1 \cdots x_i^n \cdot f(u x_1) g(v x_i) \cdots x_{i-1} x_{i+1} \cdots x_n \right|/V,$$

$i = 1, 2, \cdots, n,$

can be written as a power series in the variables $x_1, x_2, \cdots, x_n, u, v$ with non-negative coefficients converging in the range

$$0 \leq x_1, x_2, \cdots, x_n < a; \quad 0 \leq u \leq 1; \quad 0 \leq v \leq \frac{1}{a^{n-1}}.$$

Proof. Putting

$$f(x) = \sum_{q=0}^\infty a_q x^q, \quad g(x) = \sum_{m=0}^\infty b_m x^m, \quad a_q \geq 0, \quad b_m \geq 0,$$

then (7) can be expressed as

$$(-1)^{n-1} \sum_{q=0}^\infty a_q u^q \left| x_1^1 \cdots x_i^n \cdot x_i^q g(v x_i) \cdots x_{i-1} x_{i+1} \cdots x_n \right|/V$$

$$= (-1)^{n-1} \sum_{q=0}^\infty \sum_{m=0}^\infty a_q b_m u^q v^m \left| x_1^1 \cdots x_i^n \cdot x_i^q (x_1^1 \cdots x_{i-1} x_{i+1} \cdots x_n)^m \right|/V$$

$$= (-1)^{n-1} \sum_{q=0}^\infty \sum_{m=0}^\infty a_q b_m u^q v^m \left| x_i^m x_i^1 \cdots x_i^m x_i^1 \right|/V$$

$$= \sum_{q-n+2}^\infty \sum_{m=0}^\infty a_q b_m u^q v^m \left| x_i^m x_i^1 \cdots x_i^m x_i^1 \right|/V,$$
so that from Theorem 4 the correctness of this theorem follows.

Remark. For \(n = 3 \) this theorem is a result of Rosenbloom about absolutely monotonic functions \([2]\). (The range of \(u \) and \(v \) given there is not quite correct.)

5. Theorem 6. Let \(F(x, y) \) be the function \(\sum_{i=0}^{n+p} \sum_{j=0}^{n+p} a_{ij} x^i y^j \) \((p \geq 0) \), with the property that all determinants \(D \) of the \(n \)th order taken from the matrix \(|a_{ij}| \) are non-negative. Let \((x_1, x_2, \cdots, x_n)\) and \((y_1, y_2, \cdots, y_n)\) with \(x_i \neq x_j, y_i \neq y_j \) \((i \neq j) \) be two sets of variables.

Then the expression

\[
(F(x_i, y_j))/V(x)V(y).
\]

is a polynomial, symmetric in \(x_1, x_2, \cdots, x_n \) as well as in \(y_1, y_2, \cdots, y_n \) with non-negative coefficients.

Proof. On account of another theorem of Garbieri \([3]\) the expression (8) is identical with

\[
(-1)^{p-1}(t_{ij}), \quad (i, j = 0, 1, \cdots, n + 2p + 1),
\]

where

\[
t_{ij} = a_{ij} \quad (i, j = 0, 1, \cdots, n + p)
\]

\[
= \sigma'_{i-j-p-1} \quad (i = 0, 1, \cdots, n + p, j = n + p + 1, \cdots, n + 2p + 1)
\]

\[
= \sigma_{i-j-p-1} \quad (i = n + p + 1, \cdots, n + 2p + 1, j = 0, 1, \cdots, n + 2p + 1),
\]

where \((-1)^{i}\sigma_{i}\) and \((-1)^{j}\sigma_{j}\) are the elementary symmetric functions of \(x_1, x_2, \cdots, x_n \) and \(y_1, y_2, \cdots, y_n \) respectively. We develop the determinant in (9) in terms of the \((p+1)\)-line minors of the last \(p+1 \) rows. The term corresponding with the minor indicated by the column-indices \(k_1, k_2, \cdots, k_{p+1}, \) say \(M \), possesses the sign

\[
(-1)^{n+p+2}+(n+p+3)+\cdots+(n+2p+2)+k_1+k_2+\cdots+k_{p+1} = (-1)^M.
\]

If in \(M \) we replace each \(\sigma_j \) by \((-1)^{i}\sigma_j\), then the new minor \(M' \) has the sign

\[
(-1)^{n-k_1+1}+(n-k_2+1)+\cdots+(n-k_{p+1}+1)+1+2+\cdots+p = (-1)^N.
\]

The complementary minor of \(M \) with elements \(a_{ij} \) and \(\sigma'_k \), say \(\overline{M} \), can be expanded in terms of the \((p+1)\)-line minors of the last \(p+1 \) columns. The term in the expansion of \(\overline{M} \) corresponding with the minor \(N \) indicated by the row-indices \(q_1, q_2, \cdots, q_{p+1} \) is provided with the sign

\[
(-1)^{(n+1)+(n+2)+\cdots+(n+p+1)+q_1+q_2+\cdots+q_{p+1}} = (-1)^P.
\]
In \mathfrak{H} again we replace the σ' by S', and the new minor \mathfrak{H}' has the sign

$$(-1)^{(n-q_1+1)+(n-q_2+1)+\cdots+(n-q_p+1)+1+2+\cdots+p} = (-1)^Q.$$

Thus the determinant in (9) is the sum of terms each of which is a product of 3 determinants \mathfrak{M}', \mathfrak{N}', D and the factor $(-1)^{M+N+P+Q}$. By simple calculation we see that

$$M + N + P + Q \equiv (p + 1)^2 \text{ (mod 2).}$$

As from our assumption the determinants D are non-negative, it follows that each term in the development of (9) has the positive sign, on account of $(-1)^{(p+1)+(p+1)} = 1$.

The application of Theorem 1 to each \mathfrak{M}' and \mathfrak{N}' completes the proof.

References

University of Indonesia and

Technische Hogeschool, Delft