A NOTE ON UNSTABLE HOMEOMORPHISMS1

ROBERT F. WILLIAMS

In [1] W. R. Utz introduced the concept of an unstable homeomorphism and raised the question of whether there exists an unstable homeomorphism of a compact continuum onto itself. In this note an example of such an homeomorphism will be given.

Let $C$ denote the complex unit circle and for each $z \in C$, let $g(z) = z^2$. Then $g: C$ onto $C$ determines an inverse limit space $\Sigma_2 = \{ (a_0, a_1, a_2, \ldots) \mid$ for each non-negative integer $i$, $a_i \in C$ and $g(a_{i+1}) = a_i \}$. For $a, b \in \Sigma_2$, the function $\rho(a, b) = \sum_{i=0}^{\infty} \left| a_i - b_i \right| / 2^i$ is a metric for $\Sigma_2$; $\Sigma_2$ is familiar as the "two-solenoid," and is a compact, indecomposable continuum. Define $f: \Sigma_2$ onto $\Sigma_2$ as follows: for each $a = (a_0, a_1, \ldots) \in \Sigma_2$, let $f(a) = (g(a_0), g(a_1), \ldots)$. Then $f(a) = (a_0, a_1, \ldots) = (a_0, a_0, a_1, \ldots), f^{-1}(a) = (a_1, a_2, a_3, \ldots)$, and $f$ is a homeomorphism of $\Sigma_2$ onto $\Sigma_2$.

To show that $f$ is unstable, suppose that $a = (a_0, a_1, \ldots)$ and $b = (b_0, b_1, \ldots)$ are distinct points of $\Sigma_2$. Consider, as Case 1, that $a_0 \neq b_0$. Let $e^{i\theta} = a_0, e^{i\phi} = b_0$, where $0 \leq \theta, \phi < 2\pi$. Then there exists a non-negative integer $n$ such that the angle between the terminal rays of $2^n\theta$ and $2^n\phi$ is greater than $\pi/2$. Then $\rho \left[ f^n(a), f^n(b) \right] = \left| a_0^{2^n} - b_0^{2^n} \right| = \left| e^{i2^n\theta} - e^{i2^n\phi} \right| > 1$.

Case 2: for some integer $n > 0$, $a_n \neq b_n$, but $a_i = b_i$, for $0 \leq i < n$. Then $f^{-n}(a) = (a_n, a_{n+1}, a_{n+2}, \ldots), f^{-n}(b) = (b_n, b_{n+1}, b_{n+2}, \ldots)$, and there-

---

1 Research under NSF-G358, National Science Foundation.
2 A homeomorphism $f$ of a compact metric space $X$ onto $X$ is said to be unstable provided there exists a fixed positive number $\delta$, such that if $x$ and $y$ are distinct points of $X$, then there exists an integer $n$, such that $\rho \left[ f^n(x), f^n(y) \right]$ is greater than $\delta$. 

---
fore \( p[f^{-n}(a), f^{-n}(b)] \geq |a_n - b_n| \), which is equal to 2, because \( a_n^2 = b_n^2 \). Therefore \( f \) is unstable.

Other examples. If, instead, we take \( C = [0, 1] \), and \( g: C \) onto \( C \) defined by

\[
g(x) = \begin{cases} 
2x, & \text{for } 0 \leq x \leq 1/2 \\
2 - 2x & \text{for } 1/2 < x \leq 1,
\end{cases}
\]

then the inverse limit space is a well known indecomposable continuum that can be embedded in the plane. The homeomorphism \( f \), defined just as above, is unstable relative to the metric defined as above, and thus would be so relative to the metric in the plane. Furthermore, as in both examples, \( f \) leaves a point fixed, two such continua could be joined at their fixed point, yielding an example in which the space is a decomposable continuum.

Bibliography


The University of Virginia