APPROXIMATION TO IRRATIONALS BY CLASSES OF RATIONAL NUMBERS

LEONARD TORNHEIM

Hurwitz [3] proved that there exist infinitely many rational numbers \(a/b \) for every irrational \(\xi \) such that

\[
| \xi - a/b | < k/b^2
\]

if and only if \(k \geq 1/5^{1/2} \). Scott [11] proved that if the fractions \(a/b \) are restricted to any one of the three classes (i) \(a, b \) both odd, (ii) \(a \) even, \(b \) odd, or (iii) \(a \) odd, \(b \) even, the same conclusion holds if \(k \geq 1 \). Other proofs of this have been given by Oppenheim [8], Robinson [10], and Kuipers and Meulenbeld [6]. Robinson also showed that if any pair of these classes were used, then \(k \geq 1/2 \).

Let \((m, r, s) = 1\); then the set of all fractions \(a/b \) in lowest terms for which \(a \equiv r, b \equiv s \pmod{m} \) will be denoted by \(\langle r, s \rangle \). Descombes and Poitou [1; 9] have investigated the values of \(k \) needed for sets \(\langle r, s \rangle \). Hartman [2] and Koksma [5] have considered the problem of a universal constant for all sets of fractions \(a/b \) with \(a \equiv r, b \equiv s \pmod{m} \) where \(a, b \) need not be relatively prime nor is it required that \((r, s, m) = 1 \).

We obtain results for other classes of rational numbers.

Let the continued fraction expansion of \(\xi \) be \(\xi = [d_0, d_1, \ldots] \); then the \(n \)th convergent is \(a_n/b_n = [d_0, d_1, \ldots, d_n] \) and the \(n \)th denominator is \(d_n \). We shall use the following known results [4; 8; 10].

Lemma A. If \(a_{n-1}/b_{n-1}, a_n/b_n, a_{n+1}/b_{n+1} \) are three consecutive convergents to \(\xi \), then at least one of them satisfies (1) with \(k = 1/5^{1/2} \).

Lemma B. Let \(a_n/b_n, a_{n+1}/b_{n+1} \) be two consecutive convergents to \(\xi \). Then at least one of them satisfies (1) with \(k = 1/2 \). The same is true with \(k = 1 \) of one of \((a_{n+1} - a_n)/(b_{n+1} - b_n) \) and \((a_{n+1} + a_n)/(b_{n+1} + b_n) \).

Lemma C. If \((a, b) = 1 \) and if \(|\xi - a/b| < 1/b^2 \), then \(a/b \) is either \(a_n/b_n, (a_n + a_{n+1})/(b_n + b_{n+1}) \), or \((a_n - a_{n-1})/(b_n - b_{n-1}) \) for a suitable \(n \).

Lemma D. If \(a_{n-1}/b_{n-1}, a_n/b_n, a_{n+1}/b_{n+1} \) are three consecutive convergents, then \(a_{n+1} = d_{n+1}a_n + a_{n-1}, b_{n+1} = d_{n+1}b_n + b_{n-1} \), where \(d_n \) is the \(n \)th denominator, and \(a_nb_{n+1} - a_{n+1}b_n = \pm 1 \).

If \(|\xi - a/b| = c/b^2 \), we call \(c \) the approximation coefficient of \(a/b \) (for \(\xi \)).

Presented to the Society, May 1, 1954; received by the editors May 20, 1954.
Lemma E. The approximation coefficient k_n of the nth convergent a_n/b_n of ξ is given by $1/k_n = [d_{n+1}, d_{n+2}, \ldots] + 1/[d_n, d_{n-1}, \ldots , d_1]$.

Let C be a certain class of fractions a/b. We shall say that k_0 is the approximation coefficient for the class C if it is true that for every irrational ξ there exist infinitely many rational numbers a/b in C such that (1) holds if and only if $k \geq k_0$.

Lemma 1. Let $m = p^e (p$ an odd prime). Then the approximation coefficient of the class of rational numbers a/b with $(a, m) = 1$ is $1/5^{1/2}$.

Suppose that $(a_n, p) = p$. Therefore $(a_{n+1}, p) = 1$ by Lemma D. Next $a_{n+2} = a_n + d_{n+2}a_{n+1}$. If $d_{n+2} \geq 3$, a_{n+1}/b_{n+1} is satisfactory by Lemma E. But if d_{n+2} is 1 or 2, then $(d_{n+2}, p) = 1$ since p divides a_n and not $d_{n+2}a_{n+1}$. If $d_{n+3} \geq 3$, then as before we see that a_{n+2}/b_{n+2} is satisfactory. Now suppose d_{n+2} and d_{n+3} are both less than 3 and one of them is 2; if $d_{n+2} = 2$, then a_n/b_n is satisfactory for by Lemma E, $1/k_{n+1} \leq [2, 2, 1, \ldots] + [0, \ldots] > 7/3 > 5^{1/2}$; if $d_{n+3} = 2$ then similarly a_{n+2}/b_{n+2} will do. Otherwise a_{n+1}/b_{n+1}, a_{n+2}/b_{n+2}, a_{n+3}/b_{n+3} are three consecutive convergents with numerators prime to p. By Lemma A, at least one is satisfactory.

We have shown that if $(a_n, p) = p$, at least one of the three following convergents is effective. Now either $(a_n, p) = p$, or $(a_{n+1}, p) = p$, or $(a_{n+2}, p) = p$, or $(a_{n+1}a_{n+2}, p) = 1$. In this last case one of a_n/b_n, a_{n+1}/b_{n+1}, a_{n+2}/b_{n+2} will do. Thus we see that in all cases among any six consecutive convergents of ξ at least one is of the type described in the lemma.

That the constant $1/5^{1/2}$ cannot be decreased follows from the known fact that an irrational ξ requires this value if and only if its denominators are ultimately all 1. The set of such numbers is denumerable.

Lemma 2. Let $m = 2^e (e \geq 1)$. Then the approximation coefficient of the class of rational numbers a/b with a prime to m is $1/2$.

This result was proved by Robinson [10].

Lemma 3. Let $m = p^e q^f$, where p, q are distinct primes and e, f are both positive. Then the approximation coefficient of the class of all rational numbers a/b with $(a, m) = 1$ is 1.

Let a_n/b_n, a_{n+1}/b_{n+1} be two consecutive convergents of ξ. If either has numerator prime to m, then that fraction approximates sufficiently closely by Lemma E. Otherwise a_n is divisible by either p or q, say p, and a_{n+1} is divisible by q since $(a_n, a_{n+1}) = 1$ by Lemma D.
But then $a_{n+1} \pm a_n$ are prime to m and one of $(a_{n+1} \pm a_n)/(b_{n+1} \pm b_n)$ approximates ξ sufficiently closely by Lemma B.

To prove the converse, let $\xi = [0, p', w, z_{\delta m}, z_{\delta m}, \ldots]$ where w is chosen so that $wp' + 1 \equiv 0 \pmod{q'}$ and $z_n \to \infty$. Then using Lemma D we see that no convergent has numerator prime to m. Any a/b satisfying (1) with $k = 1$ is thus one of $(a_{n+1} \pm a_n)/(b_{n+1} \pm b_n)$ for some n by Lemma D. But if $\alpha_n = [d_n, d_{n-1}, \ldots, d_1]$, $\beta_n = [d_{n+1}, d_{n+2}, \ldots]$, then $(a_{n+1} \pm a_n)/(b_{n+1} \pm b_n)$ has approximating coefficient $1/(1 + 1/(\beta_n-1) - 1/(\alpha_n+1))$ and $(a_{n+1} - a_n)/(b_{n+1} - b_n)$ has approximating coefficient $1/(1 + 1/(\alpha_n+1) - 1/(\beta_n+1))$. Since $\alpha_n \to \infty$, $\beta_n \to \infty$, the theorem follows. The set of such numbers ξ has the power of the continuum.

Lemma 4. For every pair of classes $\langle r, s \rangle$ and $\langle r', s' \rangle$ there is a unimodular linear fractional transformation

$$z' = (Az + B)/(Cz + D),$$

where A, B, C, D are integers and $|AD - BC| = 1$, such that the class $\langle r, s \rangle$ is sent onto the class $\langle r', s' \rangle$.

It is an elementary result that there exists a transformation which sends a given fraction a/b into a given a'/b'. It is easy to see that any other fraction in $\langle a, b \rangle$ will have its image in $\langle a', b' \rangle$. The inverse transformation shows that the mapping is onto.

Lemma 5. The approximation coefficients of the classes $\langle r, s \rangle$ are all the same for a given m.

This result was stated by Descombes and Poitou [1]. We require the following proof in order to prove the next lemma.

Let k be the approximation coefficient of a class $\langle r, s \rangle$. Then

$$k = \sup_{\xi} \left(\liminf_{a/b} b^2 \left| \xi - a/b \right| \right)$$

where a/b ranges in the class $\langle r, s \rangle$. We shall show that the same value of k is obtained if a/b ranges through the class $\langle r', s' \rangle$.

For if $\xi', a'/b'$ are the images of ξ, a/b and if $b^2 \left| \xi - a/b \right| = k_0$, then

$$b'^2 \left| \xi' - a'/b' \right| = k_0' = k \left[\frac{Ca'/b' + D}{Ca'/b' + D + Ck/b^2} \right].$$

As $a/b \to \xi$, $q \to \infty$, and $k_0' \to k_0$. Hence

$$\liminf k_0' = \liminf k_0$$

and the lemma follows.
The set of all classes \(\langle rt, st \rangle \) for fixed \(r, s \) and for all \(t \) prime to \(m \) will be called the class \{ \(r, s \) \}. If a transformation (2) sends \(\langle r, s \rangle \) onto \(\langle r', s' \rangle \), it sends \(\langle rt, st \rangle \) onto \(\langle r't, s't \rangle \). Hence the class \{ \(r, s \) \} is sent onto \{ \(r', s' \) \}. This implies the next lemma.

Lemma 6. The approximation coefficients of the classes \{ \(r, s \) \} are all the same for a given \(m \).

Theorem 7. Let \((r, s, m) = 1 \). Then the approximation coefficient of the class of all rational numbers \(a/b \) with \(a \equiv rt, b \equiv st \) (mod \(m \)), where \(t \) is an integer depending on \(a, b \), is \(m/5^{1/2} \).

Robinson [10] proved this result for the case \(m = 2 \).

We prove the theorem for the case \(s = 0 \). The proof in general then follows from an argument similar to that used in the proof of Lemma 6. Thus \(b = dm \). The rational approximations \(a/dm \) to \(\xi \) are in one-to-one correspondence with the rational approximations \(a/d \) to \(m\xi \). Since \(|a/d - m\xi| > k/d^2 \) is satisfied for infinitely many \(a/d \) for each irrational \(\xi \) if and only if \(k \geq 1/5^{1/2} \) [2], we see that \(|a/dm - \xi| < km/(dm)^2 \) holds for infinitely many \(a/dm \) if and only if \(k \geq 1/5^{1/2} \).

Theorem 8. Let \((r, s, m) = 1 \). The approximation coefficient of the class of all rational numbers \(a/b \) in lowest terms with \(a \equiv rt, b \equiv st \) (mod \(m \)), where \(t \) is an integer depending on \(a, b \), is:

- \(m/5^{1/2} \) if \(m = p^e \), \(p \) an odd prime;
- \(m/2 \) if \(m = 2^e \), \(e \geq 1 \);
- \(m \) if \(m = p^e q^f \), \(p \) and \(q \) distinct primes, \(e \) and \(f \) positive.

By Lemma 6 it suffices to prove the theorem when \(s = 0 \). A discussion similar to that in the proof of the preceding theorem shows that this theorem follows from Lemmas 1, 2, and 3.

Our final result is a generalization of Lemmas 1, 2, and 3.

Theorem 9. Let \(m = uv \) where \((u, v) = 1 \). Then the set of rational numbers \(a/b \) in lowest terms such that \((a, v) = 1 \) and \((b, u) = 1 \) has approximation coefficient

- \(1/5^{1/2} \) if \(m = p^e \), \(p \) an odd prime;
- \(1/2 \) if \(m = 2^e \), \(e \geq 1 \);
- \(1 \) if \(m = p^e q^f \), \(p \) and \(q \) distinct primes, \(e \) and \(f \) positive.

The proof reverses the argument used to obtain Theorem 8 from Lemmas 1, 2, and 3. Let \(r = v, s = u \). Then the class \{ \(r, s \) \} has approximation coefficient \(km \) as given in Theorem 8. All fractions \(a'/b' \) in \{ \(r, s \) \} have \(a' = av \) and \(b' = bu \), where \(a, b \) are integral. Hence \(|\xi - av/bu| \leq km/(bu)^2 \) and therefore \(|(u/v)\xi - a/b| < (u/v)kuv/(bu)^2 = k/b^2 \).
Bibliography

University of Michigan