AN INEQUALITY FOR LINEAR OPERATORS BETWEEN
\(L^p \) SPACES

R. E. FULLERTON

1. Introduction. Let \(R \) and \(S \) be sets of points with completely additive non-negative measure \(\phi \) and \(\psi \) defined over \(\sigma \)-rings \(\mathcal{F}(R) \), \(\mathcal{F}(S) \) of subsets of \(R \) and \(S \) respectively. Assume also that \(R \) and \(S \) are \(\sigma \)-finite with respect to \(\phi \) and \(\psi \). For any real number \(p \), \(1 \leq p < \infty \), \(L^p(R, \phi) \) will denote the Banach space of real-valued functions \(x(\phi) \) for which \(\int_R |x(t)|^p d\phi < \infty \) where the norm is defined by \(\|x\| = \left(\int_R |x(t)|^p d\phi \right)^{1/p} \). \(L^q(S, \psi) \) will denote a similar space for the set \(S \) with measure \(\psi \). It is known \([2; 3]\) that the space \(L^p(R, \phi) \) is equivalent as a Banach space to the space \(V^p(R, \phi) \) of completely additive set functions of bounded \(p \)-variation where \(p \)-var \(F(e) = \sup \left(\sum_{i=1}^n \left| F(e_i) \right|^p / \left[\phi(e_i) \right]^{p-1} \right)^{1/p} \) where the supremum is taken with respect to all finite families \(\pi \) of disjoint subsets of \(R \) of finite nonzero measure.

If \(T \) is a bounded linear operator between two spaces of the above type, \(L^p(R, \phi) \) and \(L^q(S, \psi) \), it can be shown that \(T \) can be represented as the derivative of an integral involving a kernel. Thus \(Tx = (d/d\phi) \int_R K(e, t)x(t)d\phi \) where \(K(e, t) \) is defined for \(e \in F(R) \), \(t \in R \), \(\int_R K(e, t)x(t)d\phi \subseteq V^q(S, \psi) \) and the symbol \(d/d\phi \) applied to a completely additive and absolutely continuous set function denotes the integrable point function associated with it by the Radon-Nikodym theorem. This representation can be obtained by using the standard theorems for representations of linear functionals over spaces of the type \(L^p(R, \phi) \) \([1]\).

The problem in connection with this representation which presents a greater difficulty is that of determining necessary and sufficient conditions on the kernel to insure that the operator is one of the desired type and also to find a suitable expression or suitable inequalities for the norm of the operator \(T \) in terms of the kernel. Thus if the norm of \(T \) lies between two fixed multiples of some expression involving the kernel, this yields a convenient necessary and sufficient condition that \(T \) be bounded. In the case in which \(1 \leq p < \infty \), \(q = 1 \), such bounds were found on the norm of \(T \) and in case \(T \) was a positive operator, an exact expression for the norm of \(T \) was found by the author \([2]\). In this paper, the same techniques as were used in \([2]\) are applied to the case for \(q > 1 \) to determine a convenient expression for a lower bound on the norm of \(T \) under certain

Presented to the Society, May 1, 1954; received by the editors May 17, 1954.
conditions on \(p \) and \(q \) and on the measure of \(S \). The result is weaker than the result in the case \(q = 1 \) but it does appear to give a non-trivial lower bound to the norm of the operator \(T \).

2. Inequalities for the norm of the operator.

Theorem. Let \(T \) be a bounded linear operator from \(L^p(\mathbb{R}, \phi) \) to \(L^q(S, \psi) \), \(1 \leq p, q < \infty \). Then there exists a real-valued function \(K(e, t) \) defined on \(\mathcal{F}(S) \times \mathbb{R} \) such that for each \(x \in L^p(\mathbb{R}, \phi) \),

\[
Tx = \left(\frac{d}{de} \right) \int_R K(e, t)x(t)d\phi
\]

where \(K(e, t) \) satisfies the following conditions:

1. \(\int_E K(\cdot, t)d\phi \in V^q(S, \psi) \) for each \(E \in \mathcal{F}(\mathbb{R}), \phi(E) < \infty \).
2. \(K(e, \cdot) \in L^{p'}(\mathbb{R}, \phi) \) for each \(e \in \mathcal{F}(S), 1/p + 1/p' = 1 \).
3. \(||T|| \leq q\text{-vars } \left(\int_R |K(e, t)|^{p'}d\phi \right)^{1/p} \).
4. If \(p \leq q \) and \(\psi(S) \) is finite then the integral \(\int_R |K(e, t)|^{p'}d\phi \) has bounded \(q \)-variation.
5. \((q\text{-vars } \int_R |K(e, t)|^{p'}d\phi)^{1/p'} / \sup_\tau \left(\sum_{i=1}^n [\psi(e_i)]^{(p'-1)(q-1)/q} \right) \leq ||T|| \)

where the supremum is taken over all finite disjoint families of sets of \(S \) of finite nonzero measure.

In particular, if \(\psi(S) \leq 1 \) and \(p \leq q \) then

\[
\left[q\text{-vars } \int_R |K(e, t)|^{p'}d\phi \right]^{1/p'} \leq ||T||.
\]

Proof. If \(T \) is bounded linear from \(L^p(\mathbb{R}, \phi) \) to \(L^q(S, \psi) \) and if \(Tx = y \), let the operator \(U \) be defined from \(L^p(\mathbb{R}, \phi) \) to \(V^q(S, \psi) \) as \(Ux = \int_S \gamma(x)d\phi \). \(U \) is bounded linear from \(L^p(\mathbb{R}, \phi) \) to \(V^q(S, \psi) \) and has the same norm as \(T \) \([2; 3]\) and hence for any fixed \(e \in \mathcal{F}(S) \), the functional defined by assigning to each \(x \in L^p(\mathbb{R}, \phi) \) the value of \(Ux \) at \(e \) yields a linear functional over \(L^p(\mathbb{R}, \phi) \). Thus, by using the known representation theorems for linear functionals on \(L^p \), \([1]\), \(Ux(e) = \int_R K(e, t)x(t)d\phi \) where \(K(e, \cdot) \in L^{p'}(\mathbb{R}, \phi) \) for each \(e \in \mathcal{F}(S) \). Thus \(Tx = \left(\frac{d}{de} \right) \int_R K(e, t)x(t)d\phi \) and (2) is proved. If \(\gamma_E(t) \) is the characteristic function of \(E \in \mathcal{F}(S) \), then \(\gamma_E \in L^{p'}(\mathbb{R}, \phi) \) and \(\int_R K(e, t)\gamma_E(t)d\phi = \int_E K(e, t)d\phi \in V^q(S, \psi) \). Thus (1) is true. The Hölder inequality can be used to prove (3). For \(x \in L^p(\mathbb{R}, \phi) \),

\[
||Tx|| = ||Ux|| = q\text{-vars } \int_R K(e, t)x(t)d\phi \leq q\text{-vars } \left(\int_R |K(e, t)|^{p'}d\phi \right)^{1/p'} \left(\int_R |x(t)|^p d\phi \right)^{1/p}.
\]
The principal part of the proof of the rest of the theorem lies in the proof of the inequality (5). Let $\Pi = \{\pi\}$ be the class of all families of disjoint measurable subsets $\pi = \{E_i\}$ of finite nonzero measure in R. It was proved in [2] that the set $B \subseteq L^p(R, \phi)$ consisting of all functions of the type $z(t) = \sum_{i=1}^{n} \left(\frac{a_i \gamma_{E_i}(t)}{\phi(E_i)^{1/p}} \right)$ is dense in the unit sphere of $L^p(R, \phi)$ where $\gamma_{E_i}(t)$ denotes the characteristic function of E_i, $\sum_{i=1}^{n} a_i |E_i|^{1/p} \leq 1$, and $\{E_i\}$ ranges over all of Π. Thus $\|T\| = \sup_{e \in E} \|Tz\|$. Let $\{e_i\}$ be any finite family of sets in $\mathcal{F}(S)$ of finite nonzero measure. Then

$$\left\{ \sum_{j=1}^{m} \left(\int_{R} K(e_j, t) z(t) d\phi \right)^q \right\}^{1/q} = \left\{ \sum_{j=1}^{m} \left(\sum_{i=1}^{n} a_i \left(\int_{E_i} K(e_j, t) d\phi \right) \right) \left(\phi(E_i)^{1/p} \right)^q \right\}^{1/q} \leq \|T\|.$$

In particular, for any $e \in F(S)$, $0 < \psi(e) < \infty$,

$$\sum_{i=1}^{n} \left(\frac{\int_{E_i} K(e, t) d\phi}{\phi(E_i)^{1/p}} \right)^q \leq \|T\| \left(\|\psi(e)\|^{1/q} \right)^q$$

for all families $\{E_i\}$, $i = 1, 2, \ldots, n$, as described above and for all finite sequences $\{a_i\}$, $i = 1, 2, \ldots, n$, of real numbers such that $\sum_{i=1}^{n} |a_i|^{1/p} \leq 1$. Let $\beta_i = \left(\int_{E_i} K(e, t) d\phi \right) \left(\phi(E_i)^{1/p} \right)^q$, $i = 1, 2, \ldots, n$. This sequence $\{\beta_i\}$ can be considered as an infinite sequence by adding zeros after the nth term. Hence, if $\{a_i\}$ is any sequence for which $\sum_{i=1}^{n} |a_i|^{1/p} \leq 1$, $\sum_{i=1}^{n} \beta_i a_i \leq \|T\| \left(\|\psi(e)\|^{1/q} \right)^q$. Hence the sequence $\{\beta_i\}$ represents a linear functional φ over l^p of norm not exceeding $\|T\| \left(\|\psi(e)\|^{1/q} \right)^q$ and by using the known representation theorems for the norm of such a functional, $\|\varphi\| = \sup_{e \in F(S)} \left(\sum_{i=1}^{n} \beta_i |a_i| \right)^{1/p'} \leq \|T\| \left(\|\psi(e)\|^{1/q} \right)^{1/p'}$. Hence

$$\left(\sum_{i=1}^{n} \left(\int_{E_i} K(e, t) d\phi \right) \left(\phi(E_i)^{1/p} \right)^{p'} \right)^{1/p'} \leq \|T\| \left(\|\psi(e)\|^{1/q} \right)^{1/p'}$$

for all partitions $\{E_i\}$ of R as described above and for any $e \in F(S)$, $0 < \psi(e) < \infty$. Hence if the supremum is taken over all such partitions.
\[
\sup_{T} \left\{ \sum_{i=1}^{n} \left(\int_{E_i} |K(e, t)\,d\phi|^p \right)^{1/p'} \right\}^{1/p'} = \sup_{T} \left\{ \sum_{i=1}^{n} \left(\frac{1}{\phi(E_i)} \int_{E_i} |K(e, t)\,d\phi|^p \right)^{1/p'} \right\}^{1/p'} \\
= p' \cdot \text{var}_R \left\{ \int_{R} |K(e, t)\,d\phi| \right\}^{1/p'} \\
= \left(\int_{R} |K(e, t)|^{p'\,d\phi} \right)^{1/p'} \\
\leq \|T\| \|\psi(e)\|^{(q-1)/q}
\]

and hence for any \(e \in \mathcal{F}(S)\) of finite nonzero measure,
\[
\frac{\left[\int_{R} |K(e, t)|^{p'\,d\phi} \right]^q}{[\psi(e)]^{q-1}} \leq \|T\|^{p'q} [\psi(e)]^{(p'q - 1)(q-1)}
\]

Let \(\{e_j\}\) be any finite family of subsets of \(S\) of finite nonzero measure, \(j = 1, 2, \ldots, m\). Then
\[
\sum_{j=1}^{m} \left[\int_{R} |K(e_j, t)|^{p'\,d\phi} \right]^q [\psi(e_j)]^{q-1} \leq \|T\|^{p'q} \left(\sum_{j=1}^{m} [\psi(e_j)]^{(p'q - 1)(q-1)} \right),
\]
\[
\left[\sum_{j=1}^{m} \left[\int_{R} |K(e_j, t)|^{p'\,d\phi} \right]^q \right]^{1/q} [\psi(e_j)]^{q-1} \leq \|T\|^{p'} \left(\sum_{j=1}^{m} [\psi(e_j)]^{(p'q - 1)(q-1)} \right)^{1/q}.
\]

If the least upper bound of the two quantities is taken with respect to all such families \(\{e_j\}\) of \(S\) then
\[
\sup_{T} \left\{ \sum_{j=1}^{m} \left[\int_{R} |K(e_j, t)|^{p'\,d\phi} \right]^q \right\}^{1/q} \leq q \cdot \text{var}_T \left(\int_{R} |K(e, t)|^{p'\,d\phi} \right) \leq \|T\|^{p'} \sup_{T} \left(\sum_{j=1}^{m} [\psi(e_j)]^{(p'q - 1)(q-1)} \right)^{1/q}
\]

and hence
\[
\left(q \cdot \text{var}_T \int_{R} |K(e, t)|^{p'\,d\phi} \right)^{1/p'} / \sup_{T} \left(\sum_{j=1}^{m} [\psi(e_j)]^{(p'q - 1)(q-1)} \right)^{1/q} \leq \|T\|.
\]

If \(S\) has finite measure and \((p' - 1)(q - 1) \geq 1\), the supremum in the
denominator is finite and this implies that \(\int_R |K(e, t)|^{p'} d\phi \) has bounded \(q \)-variation. In particular, if the measure of \(S \) is less than one and \((p' - 1)(q - 1) \geq 1\), then for each partition \(\{e_j\} \), \(\sum_{j=1}^{m} [\psi(e_j)]^{(p'-1)(q-1)} \leq 1 \) and

\[
q \text{-var}_S \left(\int_R |K(e, t)|^{p'} d\phi \right) \]^{1/p'} \leq \|T\|.
\]

However, \((p' - 1)(q - 1) \geq 1\) implies \(q \geq p'/(p' - 1) = p \). Thus if \(q \geq p \) the above inequalities will hold. Hence if \(\psi(S) \leq 1, q \geq p \), the double inequality \(q \text{-var} \int_R |K(e, t)|^{p'} d\phi \]^{1/p'} \leq \|T\| \leq q \text{-var} \int_R |K(e, t)|^{p'} d\phi \]^{1/p'} \) will hold. Thus if the right member of the inequality is finite the integral represents a bounded linear operator between \(L^p \) and \(V^q \), and if the norm of \(T \) is finite, the left member of the inequality is finite. It is to be noted that since there is no guarantee that \(\int_R |K(e, t)|^{p'} d\phi \) is an additive set function, the theorem of Riesz on the equivalence of the \(q \)-variation to the \(q \)th integral norm will not apply and the \(q \)-variation cannot be replaced by an integral.

In case \(p = q \), then \((q - 1)(p' - 1) = 1\) and in this case

\[
\sup_{\varphi} \sum_{j=1}^{m} [\psi(e_j)]^{(p'-1)(q-1)} = \psi(S).
\]

Hence we have the

Corollary. If \(S \) has finite measure and \(p = q \), then

\[
\left(q \text{-var}_S \int_R |K(e, t)|^{p'} d\phi \right) \]^{1/q} \leq \|T\|.
\]

References

University of Wisconsin