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1. Introduction. If x is a function,1 y is a function, and G is a real-

number set, then by the graph, (x, y, G), of y with respect to x in G

we mean the image of G under a transformation T such that if p is

in G, then T(p) is the ordered number-pair x(p), y(p).

Consider the following problem in integration. Let U denote the

set such that s is a member of U if and only if s is the graph of a func-

tion with respect to a function in an interval. We are to select a sub-

set X of U and assign to each member (p, u, [a, b]) of A a number

Jlu(x)dv(x) so that the following statements are true.

(1.1) If (v, u, [a, b]) is in U and «(x)=0 for each number x in

[a, b], then (p, u, [a, b]) is in X and flu(x)dv(x) =0.

(1.2) Suppose that (p, u, [a, b]) is in X, and an, au, «is, o»ii #22, a23

is a number-sequence, and f(x) =anu(x)-srai2v(x)-\-an and g(x)

= a2iu(x)-\-a22v(x)-r-a2z for each number x in [a, b]. Then (g,f, [a, b])

is in X, and

f f(x)dg(x) - 2-1 [f(a) +f(b)] [g(b) - g(a)]
J a

= (ana22 — ai2a2i) <   I    u(x)dv(x) — 2-1 [u(a) + u(b) ] [v(b) — v(a) ] > •

(1.3) Suppose that (v, u, [a, b]) is in U and that a<c<b. Then

(p, u, [a, b]) is in X if and only if it is true that (v, u, [a, c]) and

(p, u, [c, b]) are in X; moreover, if (p, u, [a, b]) is in X, then

flu(x)dv(x) = Jlu(x)dv(x) -\-f^u(x)dv(x).
In passing, we remark that if u is a step-function, v is a step-

function, and [a, b] is an interval, then (p, u, [a, b]) is in X and the

number f*u(x)dv(x) is specified by (1.1), (1.2), and (1.3).

One solution of this integration problem has been given in [2],

[3], and [l], as may be verified from Definition 2.1 and Theorem 2.1

of [l]. Now from Definition 2.1 of [l] it can readily be seen that if u

is integrable with respect to v in [a, b], then there is a countable sub-

set G of [a, b] such that the following statement is true: if e is a posi-
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tive number, then there is a subdivision D of [a, b], each of whose

terms is in G, such that \Se(u, v)—f%u(x)dv(x)\ <e if E is a refine-

ment of D each of whose terms is in G.

This fact suggests the possibility of a new way of defining an inte-

gral as a limit of approximating sums (see §2 of this paper) so as to

retain the properties (1.1), (1.2), (1.3). Most of the fundamental ideas

involved are illustrated by the following example, in which we con-

sider the integral of a totally discontinuous function with respect to

a totally discontinuous function.

Example 1.1. Suppose that [a, b] is an interval, c is a positive num-

ber, u(x)=c and v(x)=x if x is an irrational number, and c+1

Su(x) gc + 10 and x + 1 ̂ v(x) gx + 10 if x is a rational number. Let

G denote the set whose members are a, b, and the irrational numbers

between a and b; and let H denote the set whose members are the

rational numbers between a and b. Then

(i) the graph (v, u, H) is a singular graph (Definition 2.1),

(ii) G is a summability set (Definition 2.3) for u and v in [a, b],

(iii) flu(x)dv(x)=c(b-a)+2-1[c + u(b)][v(b)-b]-2-1[u(a) +c]

• [v(a) —a], and

(iv) if A is a subdivision of [a, b] and € is a positive number, then

there is a refinement B of A such that \Sc(u, v) — f\u(x)dv(x)\ <e if

C is a refinement of B each of whose terms is a term of B or a number

in G.

2. Definitions and lemmas. We now introduce three definitions

upon which the rest of this paper will be based.

Definition 2.1. If u is a function, v is a function, and H is a real-

number set, then the statement that (v, u, H) is a singular graph

means that if e is a positive number, then there is a countable set I

of intervals such that

(i) if [c, d] is in /, then neither c nor d is in H,

(ii)  if x is in H, then x is in an interval of I, and

(iii) if [ap, bv], p = l, 2, 3, • ■ ■ , are the members of I, and Ap and

Bp are subdivisions of [aP, bp], then Eo>> \Sap(u, v)—SBp(u, v)\ <e.

Example 2.1. Suppose that u(x) =0 or 1, according as x is a ra-

tional number or an irrational number, and that v(x) = 1 +x or x,

according as x is a rational number or an irrational number. Let

[a, b] denote an interval such that a and b are irrational numbers,

and let II denote the set of all rational numbers between a and b.

Then (v, u, H) is a singular graph.

Remark 2.1. If D and E are subdivisions of [a, b], then SD(u, v)

+SD(v, u) =u(b)v(b)—u(a)v(a) =SB(u, v)+SE(v, u), so that SD(v, u)
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— Se(v, u) =Sb(u, v) —Sd(u, v). Hence if (v, u, H) is a singular graph,

then so is (u, v, H).

Definition 2.2. The statement that x is an exceptional number for

the functions u and v in the interval [a, b] means that there is a sub-

interval [c, d] of [a, b] containing x such that if [p, q] is a subinterval

of [c, d] then

(i) u is integrable with respect to v in [p, q] if x is not in [p, q],

(ii) w is not integrable with respect to v in [p, q] if x is in [p, q].

Example 2.2. Suppose that u is a function such that if x is a real

number other than 1, then the limits u(x+) and u(x-) exist, but the

limit w(l+) does not exist. Suppose that v is a function of bounded

variation such that p(1+)^p(1). Then 1 is an exceptional number

for u and p in [0, 2].

Definition 2.3. The statement that G is a summability set for the

functions u and v in the interval [a, b] means that

(i) G is a subset of [a, b], and a and b are in G, and none of the

numbers in G is an exceptional number for u and v in [a, 6],

(ii) if 6 is a positive number, then there is a subdivision D of [a, b],

each of whose terms is in G, such that if £ is a refinement of G each

of whose terms is in G, then | Sd(u, v) —Se(u, v)\ <e, and

(iii) if G is not [a, b] and H is the complement of G in [a, b], then

(v, u, H) is a singular graph.

Example 2.3. Let G denote the complement in [a, b] of the set H

defined in Example 2.1, and let u and v be defined as in Example 2.1.

Then G is a summability set for u and v in [a, b ]; moreover, if e is a

positive number, then there is a subdivision D of [a, b], each of whose

terms is in G, such that if £ is a refinement of D each of whose terms

is in G, then \Se(u, v) — (b — a)\ <e.

Lemma 2.1. If G is a summability set for u and v in [a, b], then there

is just one number ft such that the following statement is true:

(2.1) If e is a positive number, then there is a subdivision D of [a, b],

each of whose terms is in G, such that if E is a refinement of D each of

whose terms is in G then \Se(u, v) — ft| <e.

Proof. A. Let Dt denote a subdivision of [a, b], each of whose

terms is in G, such that | 5d1(m, v)—Se(u, v)\ <l/2 if £ is a refine-

ment of £>i each of whose terms is in G. For each integer w greater than

1, let Dn denote a refinement of Dn-u each of whose terms is in G,

such that \SDn(u, v)—SE(u, v)\ <l/2n if £ is a refinement of Dn

each of whose terms is in G. Now if m is a positive integer and n is an

integer greater than m, then \SD„(u, v)—SD„ (u,v)\ <l/2m; by

Cauchy's convergence criterion, there is a number ft such that if w
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is a positive integer then \SDn(u, v)—k\^l/2n and therefore

| Se(u, v) — k\ <l/2n_1 if £ is a refinement of D„ each of whose terms

is in G. Hence there is a number k such that (2.1) is true.

B. For *' = 1, 2, suppose that ki is a number such that if k is ki then

(2.1) is true. Let e denote a positive number, and for i = l, 2, let At

denote a subdivision of [a, b], each of whose terms is in G, such that

if £ is a refinement of Ai each of whose terms is in G then | SE(u, v)

— ki\ <e. Let E denote the refinement of Ai whose terms are the

terms of Ai and A2. Then \Se(u, v)—ki\ <e, and \Se(u, v)—k2\ <e,

and therefore \ki — k2\ <2e if e is a positive number. Hence ki = k2.

This completes the proof.

Lemma 2.2. Suppose that [a, b] is an interval, u is a function, v is a

function, eis a positive number, and {[cP, dp] }"=1 is a finite sequence of

intervals such that

(i) if x is in [a, b] then x is in one of the intervals [cp, dp], and

(ii) if Cp and Dp are subdivisions of [cp, dp], p = l, 2, • • • , n, then

E"-i \ScP(u, v)-SDp(u, v)\ <e.

If A is a subdivision of [a, b] among whose terms are the numbers

Cp and dp (if any) which are in [a, b], and B is a refinement of A, then

\SA(u, v)—Sb(u, v)\ <e.

Proof. Case I; ra = l. In this case, [a, b] is a subinterval of [ci, di].

Let A denote a subdivision of [a, b], and let B denote a refinement of

A. Let Ci and Di denote the subdivisions of [ci, di] whose terms are

Ci, d\, and the terms of A and B, respectively. Then SA(u, v) —Sb(u, v)

= Sd(u, v)—SDl(u, v), and hence \SA(u, v)—SB(u, v)\ <e.

Case II; w>l. Let K denote the number sequence C\, di, c2, d2,

• ■ ■ , cn,'dn. Let A denote a subdivision of [a, b] among whose terms

are the terms (if any) of K which are in [a, b], and let B denote a

refinement of A. Let Ci denote the subdivision of [c\, di] whose

terms are the terms of A and K which are in [cx, d\], and let Z>i de-

note the subdivision of [cu di] whose terms are the terms of B and K

which are in [ci, di]. For p = 2, 3, • • ■ , ra, let Cp denote the sub-

division of [cp, dp] whose terms are the terms of K which are in

[cp, dp] and the terms (if any) of A which are in [cp, dP] but are not

terms of K, C\, C2, • • • , CP-i; and let DP denote the subdivision of

[cp, dp] whose terms are the terms of K which are in [cp, dp] and the

terms (if any) of B which are in [cp, dp] but are not terms of

K, Dh D2, ■ ■ ■ , £>„_!. Then SA(u, v)-SB(u, v)= E"=i [Scp(u, v)

-SDp(u, v)];so \SA(u, v)-Sb(u, v)\ g E"-i \ScP(u, v)-SDp(u, v)\

< e. This completes the proof.

Lemma 2.3. Suppose that Gi and G2 are summability sets *'or u and i
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in [a, b]. If there is a subinterval [c, d] of [a, b] such that none of the

numbers between c and d is in Gi and in G2, then u is integrable with

respect to v in [c, d].

Proof. Case I; none of the numbers between c and d is in G2. Since

G2 is a summability set for u and v in [a, b], it follows that if e>0

then there is an interval [ci, di], of which [c, d] is a subinterval, such

that Ci and di are in G2 and \Sc(u, v)—Sd(u, v)\ <e if C and D are

subdivisions of [ci, di]. By Lemma 2.2, if A is a subdivision of [c, d]

and B is a refinement of A, then |Sa(u, v) — Sr(u, v)\ <e. Hence u is

integrable with respect to p in [c, d].

Case II; none of the numbers between c and d is in Gi. For this

case, the argument is similar to that used in Case I.

Case III; there are between c and d a number which is in Gi and a

number which is in G2. Let e denote a positive number. For i = l, 2,

let /,• denote a countable set (see Definition 2.1) of subintervals of

[a, b] such that

(1) if [r, s] is in Iit then r and 5 are in Gi,

(2) if x is between a and b but not in Gi, then there is an interval

[r, s] in 7, such that r<x<s, and

(3) if the members of Ii are [ap, bP], and Ap and Up are subdivisions

of [ap, &„], p = l, 2, ■ ■ ■ , then £(J,, |5^p(w, v)-SBp(u, v)\ <e/2.

Now let [ft, ft] denote a subinterval of [c, a*] such that if x is in

[ft, ft] then x is not in C7i or x is not in G2. Then [ft, ft] can be covered

by a set So of segments (a^, bp) such that the intervals [ap, bp] are

from /j and I2. Let [cp, dp], p = 1, 2, • • • , w, denote a finite subset of

So such that the segments (cp, dp) cover [ft, ft]. Let D denote the sub-

division of [ft, ft] whose terms are the numbers ft and ft and the

numbers cp and dp which are in [ft, ft]. By Lemma 2.2, if £ is a refine-

ment of D, then \Sd(u, v)—Se(u, v)\ <e; so u is integrable with

respect to v in [ft, ft]. Now either u is integrable with respect to v in

[c, ft] or c is an exceptional number for u and v in [a, b] and is not in

Gi or G2, in which case w is integrable with respect to v in [c, ft] by

the above argument; similarly, if k<d, then u is integrable with

respect to v in [ft, d] and consequently in [c, d]. This completes the

proof.

Lemma 2.4. Suppose that Gi and G2 are summability sets for u and v

in [a, b] and that x is a number between a and b which is in G2 but not

in Gi. If 8 is a positive number, then there is a subinterval [c, d] of

[a, b] such that

(i) each of c and d is in Gi and in G2,

(ii) c<x<d, and
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(iii) there is a subdivision D of [c, d] such that if E is a refinement of

D then \Sd(u, v)—Sb(u, v)\ <S.

Proof. Case I; G2 is [a, b]. Let H denote the complement of Gi in

[a, b]; then x is in H, and (v, u, H) is a singular graph. Hence if S is a

positive number, then there is a subinterval [c, d] of [a, b] such that

c and d are in G% and in G2, x is between c and d, and \Sd(u,v)

— SE(u, v)\ <h if D and E are subdivisions of [c, d}.

Case II; G2 is a proper subset of [a, b]. Suppose that 5 is a positive

number and that 6 = 5/2. Let sets 7i and I2 be selected as in the proof

of Lemma 2.3. Let [ci, di] denote an interval from Ji such that

Ci<x<di. If there is a number y in [ci, x] which is in Gi and in G2,

let c denote such a number y, and let Di denote a subdivision of

[c, x]; if E is a refinement of Di, then |5di(m, v)—Se(u, v)\ <e. If

none of the numbers in [ci, x] is in Gi and in G2, let c' denote the

smallest number t such that if y is a number in [a, x] which is in Gi

and in G2 then y^t. If c' is in Gi and in G2, let c denote c'; by Lemma

2.3, u is integrable with respect to v in [c, x], and hence there is a

subdivision Z>i of [c, x] such that ISd^w, v)—Sb(u, v)\ <e if £ is a

refinement of Z?i. If c' is not in Gi and in G2, let [c", d"] denote an

interval from Jt or 72 such that c" <c' <d", and let c denote a number

in [c", c'] which is in Gi and in G2; by Lemma 2.3, u is integrable with

respect to v in [c', x], and by Lemma 2.2 if A is a subdivision of

[c, c'] and B is a refinement of A then |SU(ra, d) — 5b(«, v)\ <e/2;

hence there is a subdivision Di of [c, x] such that | Sdi(u, v) — Se(u, v) \

< e if E is a refinement of Z>i.

Similarly we find a number <£ in [x, b] which is in Gi and in G2,

and a subdivision As of [x, d] such that | 5bj(m, z>) — Se(m, d)| <e if E

if a refinement of D2. Let Z) denote the subdivision of [c, d] whose

terms are the terms of Dx and D2; if E is a refinement of Z>, then

|>Sd(m, »)— Se(u, v)\ <2e = 5. This completes the proof.

Lemma 2.5. Suppose that for i = l,2,Giis a summability set for u and

v in [a, b] and kt is a number such that if G is Gi and k is ki then (2.1)

is true. Then ki = k2.

Proof. To prove the lemma, we show that if e>0 then \ki — k2\

<6e. Suppose that e>0; for i = l, 2, let Ai denote a subdivision of

[a, b], each of whose terms is in Gi, such that if £,• is a refinement

of Ai each of whose terms is in Gi then \SE(iU, v)—ki\ <e and

\SAi(u, v)—SBi(u, v)\ <e. Let A denote the subdivision of [a, b]

whose terms are the terms of Ai and .<42.

Case I; each of the terms of A is in Gi and in G2. In this case,

\Sa(u, v)—ki\ <e and |5^(«, v)—k2\ <e; so \ki — k2\ <2e<6e.

Case II; there is a term of A which is not in Gx or not in G2. Let
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Xi, x2, • • • , xn denote the terms of A which are not in G\ or not in

G2. For p = 1, 2, • • • , n, let [cp, dP] denote a subinterval of [a, b] and

Cp a subdivision of [cp, dp] such that

(i) each of cp and dp is in Gi and in G2,

(ii) cp<xp<dp, and

(iii) if Dp is a refinement of Cp then \Scr(u, v)—Sdp(u, v)\ <e/n.

Let D denote the subdivision of [a, b] whose terms are the terms of

C\, C2, • ■ • , Cn, and A. If each of the terms of D is in Gi, then

\Sd(u, v)—ki\ <e<3e. Suppose that there is a term of D which is

not in d; let ti, t2, • • • , tm denote the terms of D which are not in

Cti. If ft is one of the first m positive integers, then there is an integer

p such that cP<tk<dp, and (by Definition 2.1 and Lemma 2.2) there

is a subinterval [rk, Sk] of [cP, dp] such that rk and sk are in Gi, and

rk<tk<Sk, and \Sk(u, v)—Sl(u, v)\ <e/2m if K and L are subdivi-

sions of [rk, Sk]. Let £ denote the refinement of D whose terms are

the terms of D and the numbers rk and sk, k = l, 2, • ■ • , m; then

ISd(u, v)—Se(u, p)I <e. Let Fdenote the subdivision of [a, b] whose

terms are the terms of £ which are in G\\ then |Se(u, v)—Sp(u, v)\

<e. Moreover, £ is a refinement of Ax each of whose terms is in G\',

so \Sp(u, v)—ki\ <e. Hence \Sd(u, p) — fti| <3e. By a similar argu-

ment, \Sd(u, v)—k2\ <3e; so |fti — k2\ <6e. This completes the proof.

Remark 2.2. If u is integrable with respect to v in [a, b], then

[a, 6] is a summability set for u and p in [a, b], and Jlu(x)dv(x) is the

number ft of Lemma 2.1.

Definition 2.4. Suppose that u is a function, v is a function, and

[a, b] is an interval.

(i) The statement that u is summable with respect to v in [a, b]

means that there is a summability set for u and v in [a, b].

(ii) if u is summable with respect to v in [a, b], then f\u(x)dv(x),

the integral of u with respect to p in [a, b], is the number ft of Lemma

2.1, and Jabu(x)dv(x) = -Jlu(x)dv(x).

3. Some properties of the integral. We shall now show that the

integral defined in Definition 2.4 has the properties ^specified in §1.

It follows directly from Definition 2.4 that the statement (1.1) is

true if X denotes the subset of U such that a member (p, u, [a, b]) of

U is in X if and only if u is summable with respect to v in [a, b].

Theorem 3.1. Suppose that the function u is summable with respect

to the function v in the interval [a, b], and an, ai2, an, a2i, a22, a23 is a

number sequence, and f(x)=anu(x)-\-ai2v(x)-\-au and g(x)=a2\u(x)

-\-a22v(x) +a2zfor each number x in [a, b]. Then f is summable with re-

spect to g in [a, b], and
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f  fix)dg(x) - 2-1 [f(a) +f(b)][g(b) - g(a)]
J a

= (ana22 — aua2i) <   I   u(x)dv(x) — 2~1[u(a) + u(b)][v(b) — v(a)]> .

Proof. If D is a subdivision of a subinterval [c, d] of [a, b], then

SdU, g) = anSD(f, u) + a22SD(f, v)

= aiia2iSo(u, u) + ai2a2iSv(v, u) + aua2iSD(l, u)

+ ana22SD(u, v) + ai2a22SD(v, v) + ai3a22SD(l, v)

d d d

= 2~1aua2iU2    + ai2a2iuv     — ai2a2iSD(u, v) + aua2iu
c c c

d d

+ aua22SD(u, v) + 2~1ai2a22v2    + aua22v   .
c e

Hence if D and E are subdivisions of [c, d], then

Si>(f, g) — SE(f, g) = (ana22 — ai202i)[5D(M, v) — SE(u, v)].

Hence if G is a summability set for u and v in [a, b], then G is a sum-

mability set for/ and g in [a, b]. Moreover, if D is a subdivision of

[a, b] and E is the subdivision of [a, b] whose only terms are a and

b, then

SD(f, g) ~ 2"1[/(a) +f(b)][g(b) - g(a)]

= (aua22 — ai2a2i){SD(u, v) — 2~1[u(a) + u(b)][v(b) — v(a)]}.

The theorem now follows at once.

Corollary 3.1a. If u is summable with respect to v in [a, b], then

v is summable with respect to u in [a, b], and fbau(x)dv(x)=u(b)v(b)

— u(a)v(a) —flv(x)du(x).

Lemma 3.2a. If the function u is summable with respect to the function

v in the interval [a, b] and x is a number in [a, b], then x is not an ex-

ceptional number for u and v in [a, b].

Proof. Let G denote a summability set for u and v in [a, b]. If x

is in G, then by Definition 2.3, x is not an exceptional number for u

and v in [a, b]. Suppose that x is not in G; let H denote the comple-

ment of G in [a, b]; then x is in H, and (v, u, H) is a singular graph.

Let e denote a positive number. Then there is a subinterval [a, di]

of [a, b] such that ci and di are in G, x is between ci and di, and
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| •Sc1(m, v)—Sdi(u, v)\ <e/2 if Ci and Di are subdivisions of [ci, di].

Suppose that there is a subinterval [c, d] of [a, b] containing x such

that if [p, q] is a subinterval of [c, d] which does not contain x then

w is integrable with respect to v in [p, q]. If cgx<d, let p denote a

number less than d between x and di, and let C2 denote a subdivision

of [p, d] such that | SC}(u, v)—Sd2(u, v)\ <e/2 if D2 is a refinement of

C2, and such that di is a term of C2 if di <d. By Lemma 2.2, there is a

subdivision C3 of [x, p] such that if D3 is a refinement of C% then

I Sc3(u, v)—Sdz(u, v)\ <e/2; hence it follows that there is a sub-

division C of [x, d] such that if D is a refinement of 67 then

\Sc(u, v)—SD(u, v)\ <e; so u is integrable with respect to v in

[x, d]. Similarly, if c<xgd, then & is integrable with respect to pin

[c, x]. Hence u is integrable with respect to p in [c, d] and conse-

quently in each subinterval of [c, d]; so x is not an exceptional num-

ber for u and v in [a, ft]. This completes the proof.

Theorem 3.2. Suppose that u is summable with respect to vin [a, b],

and that a<c<b. Then u is summable with respect to v in [a, c] and in

[c, b]; and fcau(x)dv(x)-{-flu(x)dv(x) =/„w(x)dp(x).

Proof. Let G denote a summability set for u and v in [a, ft], let Gi

denote the set whose members are c and the members of G which are

in [a, c], and let G2 denote the set whose members are c and the

members of G which are in [c, b]. If c is in G, it readily follows from

Definition 2.3 and Lemma 2.2 that Gi and G2 are summability sets

for u and v in [a, c] and [c, b], respectively, and consequently that

the conclusion of the theorem is true. Suppose that c is not in G. By

Lemma 3.2a, c is not an exceptional number for u and.p in [a, b] and

hence is not an exceptional number for u and p in [a, c] or in [c, b].

Since c is not in G, it follows that if e is a positive number, then there

is a subinterval [p, q] of [a, b] such that p and q are in G, c is between

p and q, and \Sp(u, v)—Sq(u, v)\ <e if P and Q are subdivisions of

[p, q]. From Lemma 2.2 and Definition 2.3 it readily follows that Gi

and G2 are summability sets for w and v in [a, c] and [c, b], respec-

tively, and consequently that the conclusion of the theorem is true.

This completes the proof.

Theorem 3.3. Suppose that [a, b] is an interval, H is a subset of the

segment (a, b), G is the complement of H in [a, b], and u, v, «i, vi are

functions such that

(i) Mi is integrable with respect to Vi in [a, b],

(ii) each of (v, u, H) and (vi, «i, H) is a singular graph,

(iii) u(x) =wi(x) and v(x) =vi(x) if x is in G, and
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(iv) if x is in G then x is not an exceptional number for u and v in

[a,  b].

Then G is a summability set for u and v in [a, b], and flu(x)dv(x) =

flui(x)dvi(x).

Proof. By hypothesis Ui is integrable with respect to vi in [a, b];

so if x is in G, then x is not an exceptional number for Mi and Vi in

[a, b], and since (vu «i, H) is a singular graph it can readily be seen

that G is a summability set for Ui and Vi in [a, b]. But if D is a sub-

division of [a, b] each of whose terms is in G, then Sd(u, v) =Sd(ui, Vi),

and consequently G is a summability set for u and v in [a, b] and

flu(x)dv(x) =flut(x)dvi(x). This completes the proof.
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