The Bernstein approximation problem
HTML articles powered by AMS MathViewer
- by Harry Pollard
- Proc. Amer. Math. Soc. 6 (1955), 402-411
- DOI: https://doi.org/10.1090/S0002-9939-1955-0069938-4
- PDF | Request permission
References
- N. I. Ahiezer and K. I. Babenko, On weighted polynomials of approximation to functions continuous on the whole real axis, Doklady Akad. Nauk SSSR (N.S.) 57 (1947), 315–318 (Russian). MR 0021990
- N. I. Ahiezer and S. N. Bernšteĭn, Generalization of a theorem on weight functions and application to the problem of moments, Doklady Akad. Nauk SSSR (N.S.) 92 (1953), 1109–1112 (Russian). MR 0060551
- S. N. Bernšteĭn, A condition necessary and sufficient for an even nondecreasing function to be a weight function, Doklady Akad. Nauk SSSR (N.S.) 88 (1953), 589–592; correction, 90, 124 (1953) (Russian). MR 0054777
- Einar Hille and J. D. Tamarkin, On a theorem of Paley and Wiener, Ann. of Math. (2) 34 (1933), no. 3, 606–614. MR 1503128, DOI 10.2307/1968182
- Harry Pollard, Solution of Bernstein’s approximation problem, Proc. Amer. Math. Soc. 4 (1953), 869–875. MR 58665, DOI 10.1090/S0002-9939-1953-0058665-3 E. C. Titchmarsh, Theory of functions, Oxford, 1932. —, Theory of Fourier integrals, Oxford, 1937.
Bibliographic Information
- © Copyright 1955 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 6 (1955), 402-411
- MSC: Primary 41.1X
- DOI: https://doi.org/10.1090/S0002-9939-1955-0069938-4
- MathSciNet review: 0069938