NONCOMMUTATIVE JORDAN ALGEBRAS OF CHARACTERISTIC 0

R. D. SCHAFER¹

Jordan algebras are commutative algebras satisfying the identity

$$(1) (x^2a)x = x^2(ax).$$

These algebras have been studied extensively.

A natural generalization to noncommutative algebras is the class of algebras A satisfying (1). Linearization of (1), if the base field contains at least 3 elements, yields

$$(2) \qquad (xy + yx, a, z) + (yz + zy, a, x) + (zx + xz, a, y) = 0$$

where (x, y, z) denotes the associator (x, y, z) = (xy)z - x(yz). If A contains a unity element 1, and if the characteristic is $\neq 2$, then z = 1 in (2) implies

$$(3) (y, a, x) + (x, a, y) = 0,$$

or, equivalently,

$$(4) (xa)x = x(ax).$$

That is, A is *flexible* (a weaker condition than commutativity). If a unity element is adjoined to A in the usual fashion, then a necessary and sufficient condition that (2) be satisfied in the extended algebra is that both (2) and (3) be satisfied in A.

We define a noncommutative Jordan algebra A over an arbitrary field F to be an algebra satisfying (1) and (4). These algebras include the best-known nonassociative algebras (Jordan, alternative, quasi-associative, and—trivially—Lie algebras). In 1948 they were studied briefly by A. A. Albert in [1, pp. 574–575],² but the assumptions (1) and (4) seemed to him inadequate to yield a satisfactory theory, and he restricted his attention to a less general class of algebras which he called "standard." In this paper, using Albert's method of trace-admissibility³ and his results for trace-admissible algebras, we give a

Presented to the Society, October 30, 1954; received by the editors August 18, 1954.

¹ This research was supported in part by a grant from the National Science Foundation.

² Numbers in brackets refer to the references cited at the end of the paper.

³ We use the formulation given in [2] as being more convenient for characteristic 0 than the modified version presented in [4]. We are limited to the characteristic 0

structure theory for noncommutative Jordan algebras of characteristic 0.

1. Some elementary properties. It is shown in [1] that flexibility implies that (1) is equivalent to any one of the following:

(5)
$$x^2(xa) = x(x^2a), (xa)x^2 = x(ax^2), (ax)x^2 = (ax^2)x,$$

and that (1) and (5) imply that A of characteristic $\neq 2$ is Jordan-admissible; that is, the commutative algebra A^+ in which multiplication is defined by $x \cdot y = (xy + yx)/2$ is a Jordan algebra.

It seems not to have been noted that every flexible Jordan-admissible algebra of characteristic $\neq 2$ satisfies (1), so that A is a non-commutative Jordan algebra if and only if A is flexible and Jordan-admissible. For, denoting right and left multiplications in A by R_x and L_x respectively, $(x^2 \cdot a) \cdot x = x^2 \cdot (a \cdot x)$ implies

(6)
$$[R_{x^2} + L_{x^2}, R_x + L_x] = 0.$$

But (4) implies $[L_x, R_x] = 0$, while (3) implies both $[L_y, R_x] = [R_y, L_x]$ and

$$(7) R_{xy} - R_x R_y = L_{yx} - L_x L_y.$$

In particular, we have $[L_{xz}, R_x] = [R_{xz}, L_x]$, $R_{xz} - R_x^2 = L_{xz} - L_x^2$. Then (6) gives $0 = [R_{xz} + L_{xz}, R_x] + [R_{xz} + L_{xz}, L_x] = [2L_x^2 - L_{xz} + R_x^2, R_x] + [2R_{xz} - R_x^2 + L_x^2, L_x] = 2[L_{xz}, R_x] + 2[R_{xz}, L_x] = 4[L_{xz}, R_x]$, implying (1). It is not possible to derive (4) from Jordan-admissibility even for algebras containing a unity element, for there are known examples of Jordan-admissible algebras which are not flexible, but which do contain 1 [3, p. 186].

Any noncommutative Jordan algebra of characteristic $\neq 2$ is power-associative. For, defining $x^{k+1} = x^k x$, we may prove $x^{\lambda} x^{\mu} = x^{\lambda+\mu}$ by induction on $\lambda + \mu = n$. Since this is true for n = 2, 3 by (4), we assume $x^{\lambda} x^{\mu} = x^{\lambda+\mu}$ for all $\lambda + \mu < n$, $n \ge 4$. Let $a = x^{n-3}$ in (5): $xx^{n-1} = x^{n-2}x^2 = x^{n-1}x = x^n$. We need to prove $x^{n-\alpha}x^{\alpha} = x^n$ for $\alpha = 1, \dots, n-1$, and prove this by proving $x^{n-\alpha}x^{\alpha} = x^n = x^{\alpha}x^{n-\alpha}$ by induction on α . This has been proved for $\alpha = 1$, and we assume $x^{n-\beta}x^{\beta} = x^n = x^{\beta}x^{n-\beta}$ for all $\beta \le \alpha < n-1$, and prove $x^{n-(\alpha+1)}x^{\alpha+1} = x^n = x^{\alpha+1}x^{n-(\alpha+1)}$ as follows. Let

case by the fact that, for an absolutely primitive idempotent u in a general (commutative) Jordan algebra A of characteristic p>0, the structure of $A_u(1)$ —the subalgebra on which u acts as an identity—is not known. When this result is known, it may yield not only a determination of (commutative) Jordan algebras of degree one, but also, by Albert's refinement in [4] of the trace-admissibility technique, a structure theory for noncommutative Jordan algebras of characteristic p>0.

⁴ This is proved for characteristic $\neq 2$, 3, 5 in [1, p. 574].

 $a=x^{n-(\alpha+2)},\ y=x,\ z=x^{\alpha}$ in (2). Since the sum of any three or fewer exponents is < n, we have $0=2(x^2,\ a,\ x^{\alpha})+4(x^{\alpha+1},\ a,\ x)=2x^{n-\alpha}x^{\alpha}-2x^2x^{n-2}+4x^{n-1}x-4x^{\alpha+1}x^{n-(\alpha+1)}=4x^n-4x^{\alpha+1}x^{n-(\alpha+1)}$. But (3) implies $0=2(x^{\alpha},\ a,\ x^2)+4(x,\ a,\ x^{\alpha+1})=4x^n-4x^{n-(\alpha+1)}x^{\alpha+1}$.

- 2. Trace-admissibility. A bilinear function $\tau(x, y)$ on a power-associative algebra A and with values in the base field F is called an admissible trace function for A (and A is called trace-admissible) in case
 - (i) $\tau(x, y) = \tau(y, x)$,
 - (ii) $\tau(xy, z) = \tau(x, yz)$,
 - (iii) $\tau(e, e) \neq 0$ for any idempotent e of A,
 - (iv) $\tau(x, y) = 0$ if xy is nilpotent.

If A contains 1, then the use of a linear function $\delta(x) = \tau(1, x)$ may be substituted for that of $\tau(x, y)$, and it is known [2, p. 319] that (i)-(iv) are equivalent to:

- (I) $\delta(xy) = \delta(yx)$,
- (II) $\delta((xy)z) = \delta(x(yz)),$
- (III) $\delta(e) \neq 0$ for any idempotent e of A,
- (IV) $\delta(x) = 0$ if x is nilpotent.

THEOREM. Any noncommutative Jordan algebra A of characteristic 0 is trace-admissible.

PROOF. Since any subalgebra of a trace-admissible algebra is trace-admissible, it is sufficient to prove this theorem under the assumption that A has a unity element 1. It is well known that, since the characteristic is 0,

(8)
$$\delta(x) = \text{Trace } R_x^+ = (1/2) \text{ Trace } (R_x + L_x)$$

is an admissible trace function for the Jordan algebra A^+ . We shall show that $\delta(x)$ in (8) is also an admissible trace function for A.

Since powers in A and A^+ coincide, (III) and (IV) are valid in A because they hold in A^+ . Flexibility implies (I), for $\delta(xy) - \delta(yx) = (1/2)$ Trace $(R_{xy} + L_{xy} - R_{yx} - L_{yx}) = (1/2)$ Trace $(R_xR_y - R_yR_x + L_yL_x - L_xL_y) = 0$ by (7). Now (II) in A^+ implies

(9)
$$\delta((z \cdot y) \cdot x) = \delta(z \cdot (y \cdot x)).$$

Hence (3), (I), and (9) yield $4\delta((xy)z) = \delta(2(xy)z + 2(xy)z) = \delta(2x(yz) - 2(zy)x + 2z(yx) + 2(xy)z) = \delta(4x(yz) - x(yz) - (yz)x - (zy)x - x(zy) + z(yx) + (yx)z + (xy)z + z(xy)) = 4\delta(x(yz)) - 4\delta((z \cdot y) \cdot x) + 4\delta(z \cdot (y \cdot x)) = 4\delta(x(yz))$, implying (II).

3. Structure theory. Because of the general results in [2], the structure theory for noncommutative Jordan algebras of characteristic 0

may be given as a set of corollaries to our theorem in §2. Define the $radical\ N$ of A to be the maximal nilideal⁵ of A, and A to be semi-simple if its radical is 0. Define A to be simple if A is simple in the ordinary sense and not a nilalgebra.

COROLLARY 1. The radical N of any noncommutative Jordan algebra A of characteristic 0 is the set of all z satisfying $\delta(xz) = 0$ for every x in A, and coincides with the radical of the Jordan algebra A^+ . Also A/N is semisimple.

COROLLARY 2. Any semisimple noncommutative Jordan algebra A of characteristic 0 is uniquely expressible as a direct sum $A = A_1$ $\oplus \cdots \oplus A_i$ of simple ideals A_i .

COROLLARY 3. The simple noncommutative Jordan algebras of characteristic 0 are

- (a) the simple (commutative) Jordan algebras,
- (b) the simple flexible algebras of degree two,
- (c) the simple quasiassociative algebras.

The simple quasiassociative algebras are determined in [1, Chap. V] and are further studied in [5]. A set of necessary and sufficient conditions for the multiplication table of any simple flexible algebra of degree two is given in [1, p. 588] but, inasmuch as these algebras include such interesting examples as the Cayley-Dickson algebras and the 2^t-dimensional algebras obtained by the Cayley-Dickson process [6], a complete determination of those which are not commutative remains an interesting problem.

REFERENCES

- 1. A. A. Albert, *Power-associative rings*, Trans. Amer. Math. Soc. vol. 64 (1948) pp. 552-593.
- 2. ——, A theory of trace-admissible algebras, Proc. Nat. Acad. Sci. U.S.A. vol. 35 (1949) pp. 317-322.
- 3. ——, New simple power-associative algebras, Summa Brasiliensis Mathematicae vol. 2 (1951) pp. 183-194.
- 4. ——, The structure of right alternative algebras, Ann. of Math. vol. 59 (1954) pp. 408-417.
- 5. C. M. Price, Jordan division algebras and the algebras $A(\lambda)$, Trans. Amer. Math. Soc. vol. 70 (1951) pp. 291-300.
- 6. R. D. Schafer, On the algebras formed by the Cayley-Dickson process, Amer. J. Math. vol. 76 (1954) pp. 435-446.

THE UNIVERSITY OF CONNECTICUT

⁶ One cannot hope to prove that this radical is nilpotent, or even solvable. For every Lie algebra is its own radical by this definition.