NONCOMMUTATIVE JORDAN ALGEBRAS OF
CHARACTERISTIC 0

R. D. SCHAFER!
Jordan algebras are commutative algebras satisfying the identity
1) (x%a)x = x%ax).

These algebras have been studied extensively.

A natural generalization to noncommutative algebras is the class
of algebras A satisfying (1). Linearization of (1), if the base field con-
tains at least 3 elements, yields

(2) (xy+ yx, 0,2 + (yz2+ 2y, 8, x) + (zx + 22, a,y) =0

where (x, v, 2z) denotes the associator (x, y, 2) = (xy)z—x(yz). If A con-
tains a unity element 1, and if the characteristic is 22, then z=1 in
(2) implies

(3) (3, 0, 2) + (%, 0, 9) =0,
or, equivalently,
4 (xa)x = x(ax).

That is, 4 is flexible (a weaker condition than commutativity). If a
unity element is adjoined to 4 in the usual fashion, then a necessary
and sufficient condition that (2) be satisfied in the extended algebra
is that both (2) and (3) be satisfied in 4.

We define a noncommutative Jordan algebra A over an arbitrary
field F to be an algebra satisfying (1) and (4). These algebras include
the best-known nonassociative algebras (Jordan, alternative, quasi-
associative, and—trivially—Lie algebras). In 1948 they were studied
briefly by A. A. Albert in [1, pp. 574-575],2 but the assumptions
(1) and (4) seemed to him inadequate to yield a satisfactory theory,
and he restricted his attention to a less general class of algebras which
he called “standard.” In this paper, using Albert’s method of trace-
admissibility® and his results for trace-admissible algebras, we give a
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3 We use the formulation given in [2] as being more convenient for characteristic
0 than the modified version presented in [4]. We are limited to the characteristic 0
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structure theory for noncommutative Jordan algebras of character-
istic 0.

1. Some elementary properties. It is shown in [1] that flexibility
implies that (1) is equivalent to any one of the following:

(5) x%(xa) = x(x%), (xa)x® = x(ax?), (ax)x? = (ax?)x,

and that (1) and (5) imply that 4 of characteristic #2 is Jordan-
admissible; that is, the commutative algebra A+ in which multiplica-
tion is defined by x-y=(xy+yx)/2 is a Jordan algebra.

It seems not to have been noted that every flexible Jordan-admis-
sible algebra of characteristic 2 satisfies (1), so that 4 is a non-
commutative Jordan algebra if and only if 4 is flexible and Jordan-
admissible. For, denoting right and left multiplications in 4 by R, and
L, respectively, (x?-a)-x=x2-(a-x) implies

(6) [R2+ L2 R, +L,]=0.

But (4) implies [L,, R.] =0, while (3) implies both [L,, R.] = [R,, L.]
and

(7) Rzy - RzRy = Lyz bl LzLy.

In particular, we have [L., R.]=[Ra, L.], Ra—R:=L,,—L% Then
(6) gives 0=[Ru+Ls, R.|+[Rn+Las L.]=[2L2—L.+R: R.]
+[2Ra—RE+LE, L.]=2[L., R.]+2[Ra, L.]=4[L., R.], implying
(1). It is not possible to derive (4) from Jordan-admissibility even for
algebras containing a unity element, for there are known examples
of Jordan-admissible algebras which are not flexible, but which do
contain 1 [3, p. 186].

Any noncommutative Jordan algebra of characteristic 2 is power-
associative.* For, defining x*¥+! =xkx, we may prove x*x* =x* by in-
duction on A+pu =n. Since this is true for n=2, 3 by (4), we assume
wrxr=x M+ for all Ndu<n, n=24. Let a=x"3 in (5): xx" ! =x"2%?2
=x""lx =x". We need to prove x*2x*=x" for =1, - - - , n—1, and
prove this by proving x*—exe =x" =xex*—= by induction on «. This has
been proved for a=1, and we assume x"#xf=x"=xfx"# for all
B=a<n—1, and prove x»(e+Dxatl = xn = yat+lyn—(a+D) g5 follows. Let

case by the fact that, for an absolutely primitive idempotent % in a general (com-
mutative) Jordan algebra 4 of characteristic >0, the structure of 4.,(1)—the sub-
algebra on which  acts as an identity—is not known. When this result is known, it
may yield not only a determination of (commutative) Jordan algebras of degree one,
but also, by Albert’s refinement in [4] of the trace-admissibility technique, a structure
theory for noncommutative Jordan algebras of characteristic $>0.

¢ This is proved for characteristic %2, 3, 5 in [1, p. 574].
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a=x""+? y=g z=x*in (2). Since the sum of any three or fewer
exponents is <z, we have 0=2(x2, a, x%)+4(x*t, a, x) =2x"x=
— 2x2xm 244l — 4yotiyn—(atD =4xn — 4atign—(atD)  But (3) im-
plies 0=2(x2, @, x?) +4(x, a, x*t!) =4xn — 4xn—(atDygatl

2. Trace-admissibility. A bilinear function 7(x, y) on a power-
associative algebra 4 and with values in the base field F is called an
admissible trace function for A (and A is called trace-admissible) in case

(i) 7(x, y) =7(y, %),

(i) 7(xy, 2) =7(x, y2),

(iii) 7(e, €) 0 for any idempotent e of 4,

(iv) 7(x, ¥) =0 if xy is nilpotent.

If 4 contains 1, then the use of a linear function §(x) =7(1, x) may be
substituted for that of 7(x, ¥), and it is known [2, p. 319] that (i)—(iv)
are equivalent to:

(I) 8(xy) =d(yx),

(IT) 8((xy)z) =8(x(y2)),

(IIT) 8(e)s0 for any idempotent e of 4,

(IV) &(x) =0 if x is nilpotent.

THEOREM. Any noncommutative Jordan algebra A of characteristic 0
is trace-admissible.

ProOF. Since any subalgebra of a trace-admissible algebra is trace-
admissible, it is sufficient to prove this theorem under the assumption

that 4 has a unity element 1. It is well known that, since the char-
acteristic is 0,

(8) 8(x) = Trace R;t = (1/2) Trace (R.+ L2)

is an admissible trace function for the Jordan algebra 4+. We shall
show that 8(x) in (8) is also an admissible trace function for 4.
Since powers in 4 and A+ coincide, (III) and (IV) are valid in 4
because they hold in A+. Flexibility implies (I), for &(xy)—0d(yx)
=(1/2) Trace (Ruy+Loy—Ry.—Ly)=(1/2) Trace (R.R,—R,R:
+L,L.—L.Ly,)=0 by (7). Now (II) in A+ implies

) 8((z-y)-x) = 8(z- (y-%)).

Hence (3), (I), and (9) yield 46((xy)2) =06(2(xy)z+2(xy)z) =8(2x(yz)
—2(zy)x +22(yx) +2(xy)2) = 8(4x(y2) — x(y2) — (y2)x — (z3)x — x(2Y)
+2(yx) + (¥x)z+(xy)z+2(xy)) =46(x(yz)) —46((z-y) - x) +46 (z- (y-x))
=46(x(yz)), implying (II).

3. Structure theory. Because of the general results in [2], the struc-
ture theory for noncommutative Jordan algebras of characteristic 0
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may be given as a set of corollaries to our theorem in §2. Define the
radical N of A to be the maximal nilideal’ of 4, and 4 to be semi-
simple if its radical is 0. Define 4 to be simple if A is simple in the
ordinary sense and not a nilalgebra.

COROLLARY 1. The radical N of any noncommutative Jordan algebra
A of characteristic 0 is the set of all z satisfying 8(xz) =0 for every x in A,
and cotncides with the radical of the Jordan algebra A+. Also A/N 1s
semisimple.

COROLLARY 2. Any semisimple noncommutative Jordan algebra A of
characteristic O s wuniquely expressible as a direct sum A=A,
@D - DA, of simple ideals A..

COROLLARY 3. The simple noncommutative Jordan algebras of char-
acteristic 0 are

(a) the simple (commutative) Jordan algebras,

(b) the simple flexible algebras of degree two,

(c) the simple quasiassociative algebras.

The simple quasiassociative algebras are determined in [1, Chap.
V] and are further studied in [5]. A set of necessary and sufficient
conditions for the multiplication table of any simple flexible algebra
of degree two is given in [1, p. 588] but, inasmuch as these algebras
include such interesting examples as the Cayley-Dickson algebras
and the 2t-dimensional algebras obtained by the Cayley-Dickson
process [6], a complete determination of those which are not com-
mutative remains an interesting problem.
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% One cannot hope to prove that this radical is nilpotent, or even solvable. For
every Lie algebra is its own radical by this definition.



