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Jordan algebras are commutative algebras satisfying the identity

(1) (x2a)x = x2(ax).

These algebras have been studied extensively.

A natural generalization to noncommutative algebras is the class

of algebras A satisfying (1). Linearization of (1), if the base field con-

tains at least 3 elements, yields

(2) (xy + yx, a, z) + (yz + zy, a, x) + (zx + xz, a, y) = 0

where (x, y, z) denotes the associator (x, y, z) = (xy)z — x(yz). If A con-

tains a unity element 1, and if the characteristic is ¥-2, then z = l in

(2) implies

(3) (y, a, x) + (x, a, y) =■= 0,

or, equivalently,

(4) (xa)x = x(ax).

That is, A \s flexible (a weaker condition than commutativity). If a

unity element is adjoined to A in the usual fashion, then a necessary

and sufficient condition that (2) be satisfied in the extended algebra

is that both (2) and (3) be satisfied in A.

We define a noncommutative lordan algebra A over an arbitrary

field F to be an algebra satisfying (1) and (4). These algebras include

the best-known nonassociative algebras (Jordan, alternative, quasi-

associative, and—trivially—Lie algebras). In 1948 they were studied

briefly by A. A. Albert in [l, pp. 574-575],2 but the assumptions

(1) and (4) seemed to him inadequate to yield a satisfactory theory,

and he restricted his attention to a less general class of algebras which

he called "standard." In this paper, using Albert's method of trace-

admissibility3 and his results for trace-admissible algebras, we give a
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structure theory for noncommutative Jordan algebras of character-

istic 0.

1. Some elementary properties. It is shown in [l] that flexibility

implies that (1) is equivalent to any one of the following:

(5) x2(xa) = x(x2a), (xa)x2 = x(ax2), (ax)x2 = (ax2)x,

and that (1) and (5) imply that A of characteristic j^2 is Jordan-

admissible; that is, the commutative algebra A+ in which multiplica-

tion is defined by x-y = (xy+yx)/2 is a Jordan algebra.

It seems not to have been noted that every flexible Jordan-admis-

sible algebra of characteristic t*2 satisfies (1), so that A is a non-

commutative Jordan algebra if and only if A is flexible and Jordan-

admissible. For, denoting right and left multiplications in A by Rx and

Lx respectively, (x2-a) -x=x2- (a-x) implies

(6) [Rj + Lj, Rx + Lx] = 0.

But (4) implies [Lx, Rx] =0, while (3) implies both [Lv, Rx] = [Ry, Lx]

and

In particular, we have [Lxi, Rx]= [R&, Lx], Rxi — RI = Lxz—L\. Then

(6) gives 0=[Rxt+Lxl, R,] + [R*+L*. LX] = [2L2X-Lxi+Rl, Rx]

+ [2R*-#+L\, Lz]=2[Lxt, Rx]+2[Rxi, Lx]=4[Lx2, Rx], implying
(1). It is not possible to derive (4) from Jordan-admissibility even for

algebras containing a unity element, for there are known examples

of Jordan-admissible algebras which are not flexible, but which do

contain 1 [3, p. 186].

Any noncommutative Jordan algebra of characteristic ^ 2 is power-

associative.4 For, defining xk+1=xkx,we may prove x*x»=xK~h' by in-

duction on ~K+n=n. Since this is true for » = 2, 3 by (4), we assume

x\x^=x\+li for ajj X-L.JLl<Mj n^4. Let a = x"~3 in (5): xxn~l=x"~2x2

= x"~1x=xn. We need to prove x"~ax" = x" for a = l, • • • , n — 1, and

prove this by proving xn~"x" =xn =x"x"~a by induction on a. This has

been proved for a = l, and we assume xn~ffx^ = xn=x^xn^ for all

fiSa<n — 1, and prove xn~ia+l)xa+1 =xn =xa+lxn~(-a+r> as follows. Let

case by the fact that, for an absolutely primitive idempotent u in a general (com-

mutative) Jordan algebra A of characteristic p>0, the structure of Au(l)—the sub-

algebra on which u acts as an identity—is not known. When this result is known, it

may yield not only a determination of (commutative) Jordan algebras of degree one,

but also, by Albert's refinement in [4] of the trace-admissibility technique, a structure

theory for noncommutative Jordan algebras of characteristic p>0.

* This is proved for characteristic p*2, 3, 5 in [1, p. 574],
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a=xn~Ca+2), y=x, z = x" in (2). Since the sum of any three or fewer

exponents is <«, we have 0=2(x2, a, xa) +4(xa+1, a, x)=2xn~"xa

— 2x2xn-2+4x"-1x — 4xa+1x"-ta+1)=4xn-4xa+1xn-(a+1). But (3) im-

plies 0 = 2(x", a, x2)+4(x, a, xa+1) = 4xn-4xn-(a+1)xa+1.

2. Trace-admissibility. A bilinear function r(x, y) on a power-

associative algebra A and with values in the base field F is called an

admissible trace function for A (and A is called trace-admissible) in case

(i) t(x, y)=r{y, x),

(ii) r(xy, z)=r(x, yz),

(iii) r(e, e)?±0 for any idempotent e of A,

(iv) t(x, y) =0 if xy is nilpotent.

If A contains 1, then the use of a linear function 5(x) =t(1, x) may be

substituted for that of t(x, y), and it is known [2, p. 319] that (i)-(iv)

are equivalent to:

(I) 5(xy)=5(yx),

(II) 5((xy)z)=5(x(yz)),

(III) 5(e)5^0 for any idempotent e of A,

(IV) 5(x) =0 if x is nilpotent.

Theorem. Any noncommutative Jordan algebra A of characteristic 0

is trace-admissible.

Proof. Since any subalgebra of a trace-admissible algebra is trace-

admissible, it is sufficient to prove this theorem under the assumption

that A has a unity element 1. It is well known that, since the char-

acteristic is 0,

(8) S(x) = Trace £ + = (1/2) Trace (£* + Lx)

is an admissible trace function for the Jordan algebra A+. We shall

show that 5(x) in (8) is also an admissible trace function for A.

Since powers in A and A+ coincide, (III) and (IV) are valid in A

because they hold in A+. Flexibility implies (I), for 5(xy)— 8(yx)

= (1/2) Trace (Rxv+Lxv-Rvx-Lyi) = {\/2) Trace (RxRy-RvRx

+LyLx-LxLv)=0 by (7). Now (II) in A+ implies

(9) 8((z-y)-x) = 8(z-(yx)).

Hence (3), (I), and (9) yield 48((xy)z) = 5(2(xy)z+2(xy)z) = 5(2x(yz)

— 2(zy)x + 2z(yx) + 2(xy)z) = 5(4x(yz) — x(yz) — (yz)x — (zy)x — x(zy)

+z(yx) + (yx)z-|-(xy)z-r-z(xy)) =45(x(yz)) — 48((z-y)-x)+48 (z-(y-x))

= 48(x(yz)), implying (II).

3. Structure theory. Because of the general results in [2], the struc-

ture theory for noncommutative Jordan algebras of characteristic 0
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may be given as a set of corollaries to our theorem in §2. Define the

radical N of A to be the maximal nilideal6 of A, and A to be semi-

simple if its radical is 0. Define A to be simple if A is simple in the

ordinary sense and not a nilalgebra.

Corollary 1. The radical N of any noncommutative Jordan algebra

A of characteristic 0 is the set of all z satisfying 5 (xz) =0for every xin A,

and coincides with the radical of the Jordan algebra A+. Also A/N is

semisimple.

Corollary 2. Any semisimple noncommutative Jordan algebra A of

characteristic 0 is uniquely expressible as a direct sum A=Ai

© • • • @At of simple ideals Ai.

Corollary 3. The simple noncommutative Jordan algebras of char-

acteristic 0 are

(a) the simple (commutative) Jordan algebras,

(b) the simple flexible algebras of degree two,

(c) the simple quasiassociative algebras.

The simple quasiassociative algebras are determined in [l, Chap.

V] and are further studied in [5]. A set of necessary and sufficient

conditions for the multiplication table of any simple flexible algebra

of degree two is given in [l, p. 588] but, inasmuch as these algebras

include such interesting examples as the Cayley-Dickson algebras

and the 2'-dimensional algebras obtained by the Cayley-Dickson

process [6], a complete determination of those which are not com-

mutative remains an interesting problem.
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5 One cannot hope to prove that this radical is nilpotent, or even solvable. For

every Lie algebra is its own radical by this definition.


