On the number of positive integers $\leqq x$ all of whose prime factors are $\leqq y$
HTML articles powered by AMS MathViewer
- by S. Chowla and W. E. Briggs
- Proc. Amer. Math. Soc. 6 (1955), 558-562
- DOI: https://doi.org/10.1090/S0002-9939-1955-0071449-7
- PDF | Request permission
References
- N. G. De Bruijn, On the number of uncancelled elements in the sieve of Eratosthenes, Nederl. Akad. Wetensch., Proc. 53 (1950), 803–812 = Indagationes Math. 12, 247–256 (1950). MR 35785
- N. G. de Bruijn, On the number of positive integers $\leq x$ and free of prime factors $>y$, Nederl. Akad. Wetensch. Proc. Ser. A 54 (1951), 50–60. MR 0046375 E. Landau, Vorlesungen über Zahlentheorie, vol. II, New York, 1947. I. M. Vinogradoff, Some theorems concerning the theory of primes, Mat. Sbornik (2) vol. 44 (1937).
- S. D. Chowla and T. Vijayaraghavan, On the largest prime divisors of numbers, J. Indian Math. Soc. (N.S.) 11 (1947), 31–37. MR 23269
Bibliographic Information
- © Copyright 1955 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 6 (1955), 558-562
- MSC: Primary 10.0X
- DOI: https://doi.org/10.1090/S0002-9939-1955-0071449-7
- MathSciNet review: 0071449