
STRUCT IDEALS1

A. D. WALLACE

We shall be concerned with a theory initiated in the main by Nach-

bin [4] and developed and expanded by Ward [8] and [9]. Earlier

fragmentary results are cited in the papers of Ward. This work

exemplifies a trend in topological algebra—the transition from the

algebraic operations to induced relations. Our Ursiitze are to be

found among the propositions established in recent years by Clifford,

Faucett, Green, Koch and others (see the bibliography in [7]).

Let X be a Hausdorff space and let A be a subset of XX X. Define

p, q:XXX—*Xby p(xu x2) =xu q(xhx2) =x2, and let a: XXX—>XXX

be defined by a(xi, x2) =(x2, Xi). We shall write aL for o(L) and we

note that pa = q, qa = p, <ra = the identity. For A EX let

L(A) = p((X XA)C\L)

= \J{L(x)\xEA}

= q((A XX) C\ o-L).

We term A an L-ideal if A t^FJ and if L(A) EA. An equivalent condi-

tion is that (XXA)P\LEA XX.
We state without proof some known and some easily proved re-

sults [l;2;4;6;9].

(i) L(\J{A\AEa\) = U{L(A)\AEa},
(ii) L(Ci{A\AEa})E^{L(A)\AEa},
(iii)  The union and intersection (if nonvoid) of L-ideals are L-ideals.

(iv) L(A)r\B=p((BXA)r\L),Ar\aL(B)=q((BXA)r\L).
Hence the sets L(A)f~\B, AC\oL(B), (BXA)C^L are simultaneously

void or nonvoid.

We define

L0(A) = U { x \J L(x) I x \J L(x) EA}.

It will be noted that we do not distinguish between x and {x} unless

this is essential to the clarity of a statement.

(v) If P and Q are compact sets in X, if L is closed, and if (PXQ)C~^L

= □, then (UX V)C\L = □ for some open sets UDP and VDQ.
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(vi) // A and B are compact, if L is closed, and if L(A)C\B = Q,

then L(U)H\V=\3 for some open sets UZ)A and VDB. Hence L(A) is
closed when A is compact.

(vii) // X is compact, if U is open, and if L is closed, then

L0(U) = U\<tL(X\U)

is open. If L is transitive and if L0(A)^\Z\, then L0(A) is the largest

L-ideal contained in A.

We say that L is a struct on X if L is nonvoid, closed, and transitive.

The word "struct" has been used by John Tukey in a different sense.

We say that L is continuous if L(A*) QL(A)* for each A GX. This is

a departure from the terminology of Nachbin and Ward.

(viii) If L is a struct on the compact space X, if A is an L-ideal,

and if xGX\A, then Lo(X\x) is an open L-ideal including A and ex-

cluding x.

Theorem 1. Let L be a struct on the compact space X, let A be an

L-ideal, and let B be a closed set in X such that BC\(X\A) 9^ □ [5H4

5^D]. Then among all L-ideals which satisfy with A the above condi-

tions, there is a maximal [minimal] one and each such is open [closed].

The proof of the unbracketed assertion can be made along the lines

of a similar result in [3] and the bracketed assertion follows by an

obvious duality.

Corollary. Let X be compact and let L be a struct on X. Then there

exist minimal L-ideals and each such is closed. If X properly includes

an L-ideal, then there is a maximal proper L-ideal and each such is open.

We say that a£X is L-minimal [L-maximal] if x\JL(x)C.a\JL(a)

[aVJL(a)(ZxVJL(x)] implies the equality of these sets.

For a£Z let

La = {x I x \J L(x) = a \J L(a)}.

(ix) Let L be a struct on X. If La meets an L-ideal it is contained in

it. We have La = a\JL(a) if and only if a is L-minimal. If L is a struct

on X, then La is closed.

Theorem 2. Let L be transitive.

(a) If A is a maximal proper L-ideal and if aG.X\A, then a is L-

maximal and A = X\La.

(b) If LaT^X then X\La is a maximal proper L-ideal if, and only if,
a is L-maximal.

(c) If A is a minimal L-ideal then each a £.4 is L-minimal and

La=A for each aG.A.
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(d) La is a minimal L-ideal if, and only if, a is L-minimal.

From Theorems 1 and 2 we obtain the well-known

Corollary. // X is compact and if L is a struct on X, then both

L-maximal and L-minimal elements exist.

If LEXXX we define Kl to be the set of all L-minimal elements.

Theorem 3. If L is a struct on X and if KL^ □, then KL is an L-

ideal and Kl = U {Lx\ xEKl} • If also X is compact and L is continu-

ous, then Kl is closed.

Proof. We prove only that K = KL is closed. Let aEK*\K. We

easily see from the corollary to Theorem 2 that z\JL(z)EL(a) for

some zEK and, from (vi), that there is an open set V about a with

V*r\(z\JL(z)) = □• Let Q=L0(X\V*), so that Q is an open L-ideal

by (vii). If W=VC\K, then aEW*. Ii Qf~\L(W) = U then also
Qr\L(W)*DQl^L(W*) is null. Since aEW* it follows that L(a)C\Q
= □• Hence (z\JL(z))r\Q=\J contrary to the fact that z\JL(z) is

an L-ideal of X\V* and so is contained in Q=L0(X\V*), see (vii).

We see that Qr\L(W)^D so that L(p)C\Q^O for some pEW
= Vf~\K. From the definition of K = Kl and from (ix) we have

Lp = p\JL(p)EQ. We have pEQ(^> V contrary to the fact Qf~\ V* = Q.
We say that L is monotone if L(x) is connected for each xEX. It

is usual to say that X is a continuum if it is a compact connected

Hausdorff space. Let us note that it is a consequence of results due

to I. S. Krule (which will form a part of his dissertation) that, if L

is a continuous struct on the continuum X, then A(x) ^ □ for all

xEX.
An element aEX is L-refiexive if aEL(a).

Theorem 4. // X is a continuum and if L is a continuous monotone

struct on X, then Kl is a continuum.

Proof. Let K = Kl=A\JB where A and B are disjoint nonvoid

closed sets, Theorem 3. Let U = Lo(X\B) so that U is an open A-ideal

by (vii) and (ix). That U?±\3 follows from a result of I. S. Krule

(asserting that each xEK is A-reflexive) together with the fact that

L is monotone. Let V=L0(X\A). Then U(~\V= Q. For let xEUCW

so that L(x)EUC\VEX\(A\JB) =X\K. Now xEX\K since other-
wise L(x)EK, by Theorem 3. Thus xUA(x) does not meet K con-

trary to the corollary to Theorem 2. Hence Ur\V=rj and thus

U*f\V=U- Since I is a continuum let pEU*\U = F(U).  Now
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L(U)CU and thus L(U*)GL(U)*GU* so that p\JL(p)CU*.
Hence p\JL(p)GX\VGX\B. However pGU*\U implies that
p\JL(p) is not contained in X\B.

Theorem 5. Let L be a continuous monotone struct on the continuum

X, let a(E.X\K~L and let C be the component of X\La containing Kl-

Then La = aVJ(C*\C) and if a is L-reflexive then aGC*\C.

Proof. Let K=KL and note that LaC\K=\Z\ since otherwise

LaGK. Let U = L0(X\La) so that U is an open L-ideal. For any

xGX we know that x\JL(x) meets K. Now

K\JL(U)=KU\J{L(x)\xGU}

is a union of connected sets all meeting the connected set K so

that K\JL(U) is connected and KVL(U)GUGX\La. Hence

L(U)GC. If c7*CX\La, then U*GU because U* is an L-ideal

(L is continuous) and U is the largest L-ideal contained in X\La. This

implies that U is open and closed contrary to the fact that X is con-

nected. Hence i/*f\L„^n and thus aGLaGU*. We have L(a)

GL(U*)GL(U)*GC* since L(U)GC. Thus LaGaKJL(a)Ga\JC*
and if a is reflexive, LaGC*. Now Cf\La= □ so that L„CaU>(C*\C).

If xGC*\C, then xGLa because otherwise CKJxGX\La and CU* is

connected so that C^JxGC. Hence La = a\J(C*\C) and in case a is

reflexive, La=C*\C.

Corollary. Let L be a continuous monotone reflexive struct on the

continuum X. If a is L-maximal and if aGX\K~L, then no subset of La

cuts X.

Proof. By Theorem 2 we know that X\La is an L-ideal. Now

X\La is connected since it is the same as K~L\j{L(x)\xGX\La}.

Hence C = X\La, notation of the theorem. Thus C* = C*U(C*\C)

= (X\La){JLa = X. In other words C is a dense connected set so that

X\A is connected if AGX\C=La.

From the proof of Theorem 5 we note that we have (cf. [l ])

Corollary. Let L be a continuous monotone struct on the continuum

X and let U be an open set about KL with U^X. If C is the component

of U containing R~i, then for some pGU*\U we have L(p)GC*.

It is of interest to observe that (notation of the corollary) if L is

also reflexive, then L0(U)* intersects U*\U. We recall the classical

result of Janiszewski that C* intersects U*\U, to which the above

observation bears an obvious analogy.
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