
EXTENSIONS OF ORDERED GROUPS1

PAUL CONRAD

1. Introduction and preliminary results. Throughout this paper let

G denote an additive linearly ordered group (notation o-group). Let

r denote the set of all pairs of convex subgroups Gy, Gy of G such that

G~> covers Gy (we identify y with the pair Gy, Gy). T is simply ordered

by inclusion, and the rank of G is the order type of T. Each Gy is

normal in C and Gy/Gy (called a component of G) is o-isomorphic to

a subgroup of the additive group R of real numbers. G is called d-

closed if nG=G for all n£f where / is the set of positive integers. G

is an a-extension of a subgroup H ol G if for every g>0£G there exist

h>0(E.H and wE/such that nh^g^(n + l)h. G is a-closed if it does

not admit any proper a-extensions. There exists an a-closed a-exten-

sion H of G (see [2]). If G is abelian, then there exists an a-closed

a-extension H of G such that every component of H is o-isomorphic

to R and H is a'-closed. In §4 we show that this does not hold for non-

abelian o-groups. In §3 we prove that if every component of G is

a'-closed, then there exists an a-extension of G with every component

o-isomorphic to R.

Every group can be embedded in a a'-closed group (see [6]). If G

is abelian, then there exists a a'-closed o-extension H of G such that

if h(EH, then nh(E.G for some »£/ (hence H is an a-extension of G).

Moreover any other o-extension of G that satisfies both these condi-

tions is equivalent to H. H is called the d-closure of G. In §4 we ex-

hibit an o-group with no a'-closed a-extension. In §3 we derive a

necessary and sufficient condition on the components of G for G to be

^-closed, provided the rank of G is well ordered. We also show that

any a-closed o-group of rank 2 is a'-closed and has both components

o-isomorphic to R. Finally we illustrate methods of constructing 0-

groups, making use of the normal o-extension theory stated in §2. We

make repeated use of the following induced homomorphism theorem.

I.H.T. Suppose that A, B, C, and D are o-groups; 5* is an o-homo-

morphism of A onto D; fi is an o-homomorphism of B into C; and

a is a (single-valued) mapping of A into B such that K(d)a^K(fi)

(where K(8) is the kernel of 5) and afi is an o-homomorphism of A into

C. Then there exists a unique o-homomorphism a* of D into C such

that 8a*=afi. Moreover a* is an isomorphism if and only if K(8)
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=a~lK(B). The proof is almost identical with the proof of the cor-

responding theorem for nonordered groups.

For any g5*0EG there exists a unique yET (called the value of

g and denoted by V(g)) such that gEG->\Gy. We define 7(0) <y for

all yET where 0 is the identity of G. We made use of the fact that

if t is an o-automorphism of a subgroup K of R, then kw=pk for all

kEK where p is a fixed element of the set P of all positive real

numbers.

(Added in proof. The referee has pointed out that the method of

proof of Theorem 3.1 was used by P. Jafford [4]).

2. Normal o-extensions of o-groups. The extension theory for

groups that was developed by O. Schreier [7] applies with slight

modifications to o-groups. This theory has been applied to partially

ordered groups by L. Fuchs [3]. F. W. Levi [5] effectively points out

that a normal extension G of an o-group N by another o-group N'

can be ordered so as to induce the given orders in N and N' if and

only if the inner automorphisms of G induce o-automorphisms of N.

The proofs of the statements in this section will be omitted, since

they are almost identical with the classical ones. Let N and N' be

o-groups with elements a, b, c, • • • and a', b', c', • ■ • and identities

0 and 0' respectively. Suppose that G is a normal o-extension of N by

N'. That is, there exists an o-homomorphism ir of G onto N' with

kernel JV. Then A7' is a convex subgroup of G. A mapping r of N' into

G such that r(O') =0 and r(a')ir=a' is called a representative function.

The factor set derived from r is the mapping/of N'XN' into AT defined

by: f(a', b') = -r(a'+b')+r(a')+r(b'). For x and y in G we define

xy= —y+x+y. Then (xy)z = x(y+z), and we have

(1) [ar(a')]r(b') = [ar(a'+b')]f(a', b'), and ar(0') =a,

(2) r(a')+a+r(b')+b = r(a'+b')+f(a', b')+ar(b')+b,

(3) f(a',0')=f(0',b')=0,and
^ (4) f(a', b'+c')+f(b', c')=f(a'+b', c')+f(a', b')r(c').
Conversely suppose that/ is a mapping of N'XN' into N, and r is a

mapping of N' into the group of o-automorphisms of N. Suppose

further that (1), (3), and (4) are satisfied. Let G = N'XN, and define

(a', a) + (b', b)=(a'+b',f(a', b')+ar(b')+b). Next define (a', a) posi-

tive if a'>0' or a'=0' and a>0. Then G is a normal o-extension of

N = 0'XN by N'. Thus if G is a normal o-extension of N by N', then

by using a representative function r(a') and the derived factor set

f(a', b') we can construct G. The mapping of r(a') -\-a onto (a', a) is an

o-isomorphism of G onto G. We shall frequently make use of this

representation of G. We next consider some special cases of the above

theory.
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I. Suppose that N is abelian. Then the first part of (1) reduces to

[ar(a')]r(b') =ar(a'+b'). Hence r is a homomorphism of N' into the

group of all o-automorphisms of N.

II. Suppose that G splits over N. Then we can (and always shall)

pick a representative function r so that r(a'+b')=r(a')+r(b'), and

hence f(a', b')=0. Thus G is determined by N, N' and a homo-

morphism of N' into the group of o-automorphisms of N.

III. Suppose that N is in the center of G. Then ar(a') =a' for all

a and a'. Hence G is completely determined by N, N' and a mapping

/ of N'XN' into N that satisfies  (3)  and f(a',  b'+c')+f(b',  c')

=f(a'+b',c')+f(a',b').
Let (Gi, Ti) and (G2, ir2) be normal o-extensions of N by A7'. They

are called equivalent extensions if there exists an o-isomorphism cr of

Gi onto G2 such that aa=a for all aGAr. It follows by the I.H.T. that

there exists an o-automorphism r of N' such that oir2=iriT. If 7r is an

o-isomorphism of G\ onto G2, then (since AT is convex) Nir^N or

Nir>N. If the rank of Cu is well ordered, then Nir = N. Hence in this

case the two extensions are equivalent if and only if the o-automor-

phism of N that is induced by ir can be extended to an o-automor-

phism of Gi. In general the two extensions are equivalent if and only

if there exist an o-automorphism t of N' and a mapping g of N' into

the center of N such that ari(a') =ar2(a'r) and f2(a'r, b'r) —fi(a', b')

=g(a'+b')-g(a')-g(b').

3. Some extension theorems. Let 5 be the set of all abelian convex

subgroups A of G. Let M =\JaqsA. Then M is the greatest abelian

convex subgroup of G. Clearly M is mapped onto itself by every o-

automorphism of G.

Theorem 3.1. There exists an a-extension H of G such that: (i) H

contains a d-closure D of M; (ii) H is generated by D and G; and

(iii) if K is an a-extension of G that satisfies (i) and (ii), then K is

equivalent to H.

We first prove the following

Lemma. Suppose that M is an abelian o-group, D is a d-closure of

M, and ir is an o-automorphism of M. Then there exists one and only

one o-automorphism a of D such that aa=air for all a^M.

Proof. For d^D we define da = (l/m)(mdir) where «£/ and

md£.M (i.e., o'er is the element x£Z> such that mx = mdir). If md and

nd are in M, then m2n2[(l/m)(mdir)]=mn[n(mdir)]=mn[m(ndir)]

= m2n2[(l/n)(ndir)]. Hence (l/n)(ndir)=(l/m)(mdir), and cr is a

(single-valued) mapping of D into itself. It is easy to show that cr is
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an o-automorphism of D such that aa—air for all aEM. Suppose that

p is an o-automorphism of D such that ap=air for all aEM. Consider

any dED. Then ndEM for some mEI- n(dp) — (nd)p = (nd)ir = (nd)a

=n(da). Therefore da = dp.

Proof of the theorem. G is a normal o-extension of M by G/M.

Hence there exist a representative function r(a') and a derived factor

set f(a', b') of this extension. We use the representation G of G. Let

I? be a d-closure of M. For every a' in G/M, let s(a') be the unique

extension of the o-automorphism r(a') of M to an o-automorphism of

D. Next consider any dED. There exists an mEI such that mdEM.

m[ds(a' + b')] = (md)s(a' + b') = (md) r(a' + b') = [mdr(a')]r(b')

= [mds(a')]s(b')=m[ds(a')]s(b'). Thus s(a'+b')=s(a')s(b'). Hence s

is a homomorphism of G/Af into the group of o-automorphisms of D.

Let H = G/MXD, and define (a', a) + (b', b)=(a'+b', f(a', b')
+as(a')+b). As usual define (a', a) positive if a'>0' or a' = 0' and

o>0. One easily verifies that H is an a-extension of G that satisfies

(i) and (ii).

Now suppose that H and H' are a-extensions of G that satisfy (i)

and (ii). Let D and D' be the ^-closures oi M'mH and if' respectively.

Since H(H') is generated by £> and G (D' and G), the set of repre-

sentatives r(a') of G/M is also a set of representatives of H/D

(H'/D'). D and £>' are equivalent extensions of M. Therefore there

exists an o-isortiorphism ir of D onto D' such that air = a for all aEM.

For any dGD there exists an nEI such that ndEM. n(dwr(a'))

= (ndir)r(a')=ndr(a')=ndr(a')ir=n(dr(a')ir). Hence irr(a')=r(a')ir

for all a'.

Every hEH has a unique representation fe=r(a')+o3 where dED.

Consider the mapping a: ha = (r(a')-\-d)(r — r(a')+dir of H into H'.

(r(a')+a+r(b')+b)<r = (r(a'+b')+f(a', b') +ar(b') +b)a =r(a'+ b')

+f(a', b')ir+ar(b')T+bir = r(a' + b')+f(a', b') +awr(b')+bir = r(a')

+air-\-r(b')+bTT = (r(a')+a)(T + (r(b')+b)(7. Thus a is a homomor-

phism, and it is easy to verify that a is an o-isomorphism of H onto

H' such that gc=g for all gEG.

Theorem 3.2. Suppose that G has a d-closed component, say G0/Gb-

Then there exists an a-extension H of G for which Hy/Hy=R whenever

there exists an inner automorphism of G that maps G& onto Gy, otherwise

H->/Hy^£Gi/Gy.

Corollary. Suppose that all of the components of G are d-closed.

Then there exists an a-closed a-extension of G with each component

o-isomorphic to R.

The corollary follows at once from the theorem by the usual trans-
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finite arguments. To prove the theorem we need the following defini-

tions, lemmas, and diagram. For gGG, ir(g) will denote the inner

automorphism of G determined by g. That is xir(g) = — g+x+g for

all xE.G. ir is a homomorphism of G into the group of all o-automor-

phisms of G.

For h, kEG we define V(k)r(h) = V(kir(h)).

Lemma, t is a homomorphism of G into the group of all the order

preserving permutations of T.

Proof. We first show that for every k^O, k^O, gEG, V(h) = V(k)
if and only if V(hir(g)) = V(kir(g)). For if V(h) = V(k) =7, then
h,keGy\Gy. Hence hir(g), kir(g)eGyir(g)\Gyir(g). But Gyir(g),
Gyir(g)(c.T (since ir(g) is an o-automorphism). Thus V(hir(g))

= V(kir(g)). Conversely if V(hir(g)) = V(kir(g)), then V(h) = V(hir(g)

•ir( — g)) — V(kir(g)ir( — g)) = V(k). Thereforer is a (single-valued) map-

ping of G into the set of all 1-1 mappings of T into itself. Since ir(h)

is a mapping of G onto G and V is a mapping of G onto T, each r(h)

is a mapping of T onto itself. If V(h) < V(k), then V(hir(g)) ̂  F(Mg)).

Without loss of generality 0<h<k. Then 0<hir(g) <kir(g), hence

V(hir(g))<V(kir(g)). Therefore each V(h) is an order preserving

permutation of T. Finally r(k)r(g+h) = V(kir(g+h)) = V([kir(g)]

■ir(h)) = 7[fcr(*) ]r(A) = [V(k)r(g) ]r(h).
For/3er we define As = {5er| G%(g) =G5 for some gGG}.

Lemma. A„= {5Gr| F(fc) =0 a«cf V(kir(g)) =8 for some h.k^OGG}
= {c5£r|/3r(g) =8 for some g(E.G\. Gh/d is o-isomorphic to G^/Gpfor

every 8GA,j.

The equalities follow from the last lemma and the fact that each

r(h) induces an o-permutation of Ap. The last part of the lemma is an

immediate consequence of the I.H.T.

Now C/G/s is o-isomorphic to a subgroup R$ of R. Hence for each

SGAfl there exists an o-isomorphism ttj of Gi/d onto R$. The set

{ir{|8GAfl} will be kept fixed throughout the following discussion.

Then for each 5£A/j we have the diagram on the following page,

where the at are the natural o-homomorphisms. K(<riiri)ir(h)

= Gtir(h)=GsT<.h-,=K(<Tsr(h)ir6T(h)). Therefore by the I.H.T., ir(h) in-

duces an o-automorphism p(8, h) of Rp such that <rnrip(8, h)

=Tr(h)<Tir(h)irsTfr). Similarly ir(k) induces an o-automorphism p(8r(h), k)

of Re such that crjr(A)7r«r(M^(5r(fe), k) =ir(k)(Ttr{h+k)irtr{h+k), and ir(h+k)

induces an o-automorphism p(8, h+k) of R$ such that anrip(8, h+k)

^irty+fyo-STtf+kiirtTih+k). But <rsirtp(8, h+k) =tr(h)ir(k)<Tt,(ii+k)irtT{h+k,

=ir(h)<TtTlK)irtr{h)p(8T(h), k)=o-iirip(8, h)p(8r(h), k). Therefore p(8, h)
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p(8, h+k)

^mh) p(8r(h), *)>„

j   ?T» j   1TJt(A) I  *"lr(A+*)

j <r» I o-jT(A) l o-j,(A+i)

ir(A+.£)

•p(8r(h), k) = p(8, h-\-k). Finally without loss of generality p(8, h)EP
for all SGA^and hEG.

Proof of theorem. Since Gfi/G^ is J-closed, R = Rp®Kp. Form the

small direct sum K of the K~t where Aj = Kg for all SGAp. Denote the

identity of K by <p. Define k = ( • • • , k>, • • • )EK positive if k^<f>
and the nonzero component with greatest 5 is positive. Then K is an

abelian o-group that we wish to adjoin to G.

For kEK and gEG we define kp(g) = ( • • ■ , [ktp(8, g)]sTig), ■ • •).

(h+k)p(g) = ( • • • , [(h+k)sp(8, g)]8r(„, ...)=(••-, [(hs+h)p(8,

gOku,), ••■)=(•••. [hp(8, g)]jr(„), ■ • • ) + ( • • • , [ktp(h, g)]hiD,
■ ■ ■)=hp(g)+kp(g). If kp(g)=<p, then ksp(8, g)=0 for all 5GA„.

Hence k> = 0 for all 5, and k=<f>. xp(g) =k has a solution x for every

kEK. Simply let xi = ksT{0)/p(8, g). Thus we have shown that p(g) is

an automorphism of K. kp(g+h) = ( • ■ ■ , [hp(8, g+h)]irig+h), ■ ■ ■)

= (•••, [kip(8, g)p(8r(g), A)]«t(,)t(A), •••)=(•••. [hp(8, g)]jr(„),
• • • )P(h)= \kp(g)]p(h). Therefore p is a homomorphism of G into

the group of automorphisms of K.

Let H = GXK, and define (gi, fei) + (g2, fc2) = (gi+g2, kip(g2)+k2).

Then H is a splitting extension of K by G. Define (g, &) Gi? positive

if V(g) > V(k) and g>0, or V(k) > V(g) and k><j>, or 7(g) = V(k) =5
and go-{7rj+fej>0. It follows by a long straightforward computation

that H is an o-group. In fact H is an a-extension of {(g, 0)|gGG}.

Finally if SGAp, then the mapping of (g, k)EH* onto g0-a7rj+&j is an

o-homomorphism of Hs onto 2? with kernel Hi, and if 7GT\A^, then

the mapping of (g, k)EHy onto g+G7 is an o-homomorphism of W

onto Gy/Gy with kernel ifT.

Assume that G has a convex subgroup Gl that covers 0. Then by

Theorem 3.1 there exists an o-extension K of G such that K1 is en-

closed. Hence by Theorem 3.2 there exists an a-extension H of G such

that H*=R. This result can be sharpened.
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Theorem 3.3. If G has a convex subgroup G1 that covers 0, then there

exists an a-extension H of G such that (i) H*=R, (ii) H is generated by

Hl and G, and (iii) if K is an a-extension of G that satisfies (i) and (ii),

then K is equivalent to H.

The proof is entirely similar to the proof of Theorem 3.1. For if ir

is an o-automorphism of a subgroup Gx of R, then air = pa for all

aGG1 where p is a fixed element of P. Hence there exists a unique

extension of ir to an o-automorphism of R.

Suppose that the inner automorphism ir(g) of G maps Gy onto it-

self, then we have the following diagram:

D   Pn - P(y, *y, ng)
Ky > Ky

Ty \     ITy

Gy/Gy Gy/Gy

<ry | |   <Ty

J, »(»g) - kg)]; I
where p is an o-automorphism of Ry, hence without loss of generality

PEP.
Lemma. // G is d-closed, then I +p+ • • • +pn is an o-automorphism

of Ry for every «£/.

Proof. It is sufficient to show that (l+p+ • • • +pn)Ry=Ry.

Clearly (l+p+ ■ ■ • +p")Ry^Ry. Since G is d-closed, Ry is a'-closed.

If V(g)^y, then p = l. Hence (l+p + • • • +pn)Ry=nRy=Ry. Next

assume that V(g) >y. Consider any AGG with value y and any »£/.

Then there exists an element d(EG such that (n + l)d = (n + l)g+h

= (n + l)g mod Gy. Hence d=g+x where V(x)=y. (n + l)g+h

= (n + l)(g+x) = (n + l)g+xir[ng]+xir[(n-l)g]+ ■ ■ ■ +xir[g]+x.

Therefore hxyiry=xir\ng]o-yiry+ ■ • • +xir[g]<ryiry+X(Tyiry=pn[x<ryiry]

+ • ■ • +p[x<Tyiry]+x<Tyiry = (pn+ • ■ • +p + l)[xayiry]. This com-

pletes the proof, since hayiry is an arbitrary element of Ry.

Theorem 3.4. If the rank ofGis well ordered, then the following state-

ments are equivalent.

(A) G is d-closed.
(B) If pis an o-automorphism of Ry that is induced by an inner auto-

morphism of G, then l+p+ ■ ■ • +pn is an o-automorphism of Ry (for

every y€zT and n€EI).

Proof. By the last lemma (A) implies (B). Now assume that (B) is

true. Since T is well ordered, every Gy is normal. Hence for every
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yET and gEG, ir(g) induces an o-automorphism p(y, iry, g) of Ry. In

particular I=p(y, iry, 0) for every yET. Therefore »i?7 = (l + l2

+ ■ • • +ln)Ry=Ry. Therefore every component of G is d-closed.

Next consider any gj^O in G and any nEI- Let V(g)=a. Then

since Ga/Ga is d-closed, there exists X = Ga-r-a in G"/Ga such that

nX = Ga-\-g. Hence na=g mod Ga. Let II={7Gr| there exists

hyEG such that nhy=g mod Gy\. We note that II contains all yET

such that 7^a. Thus LT contains a least element, say B. Since

0=Gi<G1=G2<G2 = G3< • • • , it is sufficient to prove that j8 = l.

Suppose that /3>1. Then nhp+q=g where o?^0 and V(q)=y<B.

We now show that there exists yEG such that V(y) =y and «(A/s+y)

= g mod Gy. But this contradicts our definition of B. Let p=p(y, iry,

he) and consider any yEG''\Gy. Then for any kEI we have — M^+y

+M3+GT=y7r(M|3)(r7= [^*(y<7Tir7)]irT_1. Therefore «(^+y)+G7

= M^+y7r[(«-l)^]+ • • • -T-y^[h]+y+Gy=nhg-T-[pn~l(yo-y-n-y)]

•7rT-1+ • • ■ +[p(yo-yTry)]iry-1+yo-yiryiry-1=nhp +[(Pn-1+ ■ ■ •+£ + 1)

• (jov-r) k-T1-
(1) [(/»"-» + • • • +p + l)(y<rr7rT)]7rr-1=2(rr if and only if

(2) y<TyTy = qaywy/(p"-l+ ■ ■ • +P + 1).

Since (J>n-1+ • • • +£ + l)i?T=i?T, it follows that the right-hand side

of (2) is an element of Ry. Therefore we can pick yGG that satisfies

(2) and hence (1). But for this y: n(hp-r-y)+Gy=nh0-r-qo-y=nhp-T-q

+G7. Therefore g = nh$-\-q=n(hp-\-y) mod Gy.

Note that Example 4.1 shows that the well ordering cannot be dis-

regarded. In the following corollaries we assume that the rank of G

is well ordered.

I. If G is abelian, then G is d-closed if and only if all of its compo-

nents are d-closed.

II. If every component of G is o-isomorphic to R, then G is d-closed.

III. If every component of G is d-closed, then there exists an a-

closed a-extension H of G such that Hy/Hy=R for all yET, and H is

d-closed.

Theorem 3.5. Any a-closed o-group of rank 2 is d-closed and has both

components o-isomorphic to R.

Proof. Let G be a-closed and of rank 2 (G=G2>G2=G1>Gi = 0).

Then without loss of generality (by Theorem 3.3) G1=R. Consider

any pair of elements g, hEG\R such that nh=g for some nEI- For

every cER, cir(g) =Lc and cir(h) =Kc where L, KEP- But Lc = cir(g)

= cw(nh)=c[n-(h)]n = Knc. Therefore cir(h)=Lllnc. For any kEG\R,

gir(-k) =g+p and hir(-k) =h+q where q, pER- We next show that

q is completely determined by n, g, and k. This and the fact that

cir(h) is determined by n, g, and c form the basis of our proof.
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For any q(£R and m£7 we have m(h+q) =mh+qir[(m — l)h]

+ • • • +qir[h]+q=mh+[Um-»in+ ■ ■ ■ +L1'» + l]q. Let

q = />/[L("_1)/n + • • ■ + L1/B + 1].

Then n(h + q) =nh + p=g+p =k+g — k=k+nh — k=n(k+h—k).
Therefore k+h — k = h+q.

Now assume (by way of contradiction) that G is not d-closed.

Then there exist g€zG\R and a positive prime n such that nx = g has

no solution in G. As before cir(g) =Lc for c(ER and gir( — k) =g+p for

k£G\R where L=L(g)£P and £=£(g, &)G-R. Let g(*) =q(n, g, k\
= p/[L(n-»in+ ■ ■ • +L1/n+l]. Let N be the additive group "of*

integers modulo n (represent the elements of N by 0,1, 2, • • • , n — 1).

For u, dGA7 and &GG we define:

,/      s        (S if M + v = n'

1.0 if M + fl < «,

fLu/nA if A G £ or m = 0,
hr(u) =  -L

\[L<—»'» + • • • +L1"'+ 1 ]?(*) + hiiheG/R&ndu^O.

Finally let K = NXG and define («, *) + (». &) = ([«+»]*-, /(«, »)
+Ar(») +&) for all «, »EiV and ft, &GG where ir is the natural homo-

morphism of the integers onto N. To complete this proof it is suffi-

cient to show: (a) if is a group; (b) the mapping of AGG onto (0, h)

is an isomorphism of G onto a subgroup G* of K; (c) K can be ordered

so that it is a proper a-extension of G*. For since G* is a-closed, it

follows that any a-closed o-group of rank 2 is d-closed. Then the

latter part of this theorem is an immediate consequence of Theorem

3.2.
To prove (a) it is sufficient to show that r(m) is an o-automorphism

of G (for every mGA7), and that r and / satisfy conditions (1), (3),

and (4) of §2. This follows by straightforward grinding, (b) is obvi-

ous. To prove (c) we make use of the following

Lemma, (i) nx=g mod R has no solution.

(ii) If (u, h) E.K and ug+nh£.R, then u=0.

For suppose that there exists an h*E.G such that nh=g+k where

kER. Then g=n(h-k/[L<-»-"i»+ ■ ■ ■ +L1>n + l]), a contradiction.

Next assume that (u, h) G.K, ut*0, and ug+nh^R. Then the greatest

common divisor of u and n is one. Hence l=au+bn for a, b£LI.

g = aug+bng and ug=n( — h)+k where &G-R. Thus g=a[n( — h)+k]

+bng = n[a( — h)+bg] mod R, but this contradicts (i).
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We define (u, h) EK positive if wg+«A>0 in G. Clearly (0, 0) is not

positive. Let («, h) and (v, k) be nonzero elements of K.

I. Either (u, h) or — (u, h) is positive. For suppose that (u, h) is not

positive, then ug-\-nh<0. If w=0, then — (u, h) = (0, —h) and

0g+n( — h) = —nh>0. If w^O, then by (ii) every element of — (ug

+nh)+R is positive. — (u, h)=(n — u, —hr(n — u)—g). (n — u)g

+n( — hr(n — u)—g)=—(ug+nh) mod R. In either case — (u, h) is

positive.

II. If (u, h) and (v, k) are positive, then (u, &)+(», k) = ([u +»]ir,

f(u, v) +hr(v) +k) is positive. This is obvious if u =v = 0. Suppose that

Uf^Q or v^O. Ii u+v<n, then (u, h)+(v, k)=(u+v, kr(v)+k) and

(u-r-v)g-\-n(hr(v)+k)=ug+nh-\rvg-r-nk mod 2?. If w+i>=a+ra, then

(u, h) + (v, k) = (a, g+hr(v)+k) and ag+n(g+hr(v)+k)=ag+ng

+nh+nk=ug+nh-r-vg-\-nk mod i?. If m^O, then wg+raAG-R and if

v?*0, then z>g+w&G-K- Hence in either case (u, h)-\-(v, k) is positive.

III. If (u, h) is positive, then A =(v, k)-\-(u, h) — (v, k) is positive.

Suppose that v=0. Then A =(u, kr(u)-\-h — k). If w = 0, then A —(0,

k+h-k) and 0g+n(k+h — k) =k+nh-k>0. If u^O, then ug+nh
mod R contains only positive elements, and ug+n(kr(u)+h — k)

=ug-\-nh mod R. Next suppose that v^O. Then A =(u, f([v+u]ir,

n — v) +f(v,u)r(n —v) -\-kr(u)r(n —v) +hr(n —v) —kr(n—v)—g). If

m = 0, then ^4=(0, g+kr(n — v)+hr(n— v)— kr(n—»)— g) which is

positive. Assume «^0. If v+u<n, then f([v+ti]ir, n—v) =f(v+u,

n—v)=g and /(y, «)=0. Hence A=(u, g-\-kr(u)r(n — v)-\-hr(n — v)

— kr(n—v)—g) = (u, b), and ug+nb^ug+nh mod i?. If w+M=a+«,

then [v-r-u]ir-\-n—v = u. Hence A=(u, gr(n—v)-\-kr(u)r(n — v)

-\-hr(n—v)—kr(n—v)—g)=(u, c), and ug-\-nc = ug-\-nh mod 2?.

Therefore K is an o-group. Since n(u, h)EG* and ft>0 in G if and

only if (0, h) is positive in K, we have that if is a proper a-extension

of G*. Thus modulo a considerable amount of computation we have a

proof of Theorem 3.5.

Remark. This theorem can be sharpened. Suppose that G is an

o-group of rank 2. Then there exists a d-closed a-extension H of G

such that H^R and iJ/il1 is the d-closure of G/G1. Moreover if K

is another o-group that satisfies all these conditions, then H and K

are equivalent extensions of G. This follows from Theorem 3.3 and

the uniqueness of the method of adding a solution of nx=g that we

used in the above proof.

4. Construction of o-groups. Let G be of rank 2. Then without loss

of generality G = N'XN where N' and N are subgroups of R and G

is a normal o-extension of A = 0XA^ by N'.

I.    G is a splitting extension of N by N'. Then G is completely
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determined by a homormophism of N' into the subgroup L = {x£P

\xN = N} of P. Two such extensions (determined by the homomor-

phisms ri and r2) are equivalent if and only if there exists p(E.P such

that pN'=N' and ri(a') =r2(pa') for all a'GAP. Any homomorphism

r of N' into P can be extended to a homomorphism 5 of R into P. For

let Q be the d-closure of N' in R. Then for every oG(? there exists

»G-f such that wgGA77. Define !>(a) =(r(nq))1,n. Then » is the homo-

morphism of Q into P such that v(a') =r(a') lor all a'GAf'. i? = £>8.D.

Hence every #G-R has a unique representation 3c=g,-|-d. Define

s(x) =v(q). Then 5 is the desired extension of r. Thus by Theorem 3.3

we have: G ca« oe extended to a splitting o-extension of R=0XR by R.

Since R is the direct sum of groups Day where D denotes the ra-

tional numbers and ay^R, a homomorphism cr of R into P is deter-

mined by its behavior on the Day. But ayor=pyQP, and daycr = (py)d

for all dG-D.

There are three nonequivalent splitting o-extensions of R by R

tor which the defining homomorphism is continuous. For a continu-

ous homomorphism 5 of R into P is of the form s(x) =2kx tor all x(E.R,

where k is a fixed element of R. It k=0, then G=R®R. If k^O, then

we have the real (one-dimensional) affine group. If Gi and G2 are

determined by £i^0 and k2?*0 respectively, and kik2>Q, then the

mapping ir of (a', b) onto ([ki/k2]a', b) is an o-isomorphism of Gi onto

G2 such that xir = x for all xG-K.

II. N is in the center Z of G. Example. Let ir and cr be homomor-

phisms of N' into N such that ir(a')a(b') ^N for all a', b'^N'. Define

/(a', o')=ir(a'M&').
III. G is not a splitting extension and N is not in the center of G.

Example. Let N = R and r be a homomorphism of N' into P. Define

0 if   a' = 0 or V = 0,

/"(a', o') =    r(b') + 1   if   a' ^ 0 and a' + V = 0,

r(6') if   a' ^ 0, 6' ^ 0 and a! + V ^ 0.

Since the above constructions depend only on the existence of a

homomorphism of N' into R or P, the following lemma enables us to

extend the construction to o-groups G such that N' is not a subgroup

of R.

Lemma. Each of the following properties implies the existence of a

nontrivial homomorphism of G onto R. (1) G covers a convex subgroup.

(2) The rank of G is inversely well ordered. (3) G is abelian and d-closed.

(4) There exists a y€zT such that Gy is normal in G, Gy^G, and

Gy/Gy is not in the center of G/Gy. (5) There exists a 7GT such that
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Gy is normal in G, Gy/Gy is in the center of G/Gy, and G/Gy splits over

a nonzero subgroup B of Gy/Gy.

Proof. If G covers a convex subgroup C, then let ir = 7Ti7T2 where

ti is the natural o-homomorphism of G onto G/C and iT2 is an o-iso-

morphism of G/C into R. If the rank of G is inversely well ordered,

then G covers a convex subgroup. If G is abelian and d-closed, then

G/Gy^G/Gy®Gy/Gy for every yET. Let ir =<pyir3iry where <py is the
natural o-homomorphism of G onto G/Gy, w3 is the projection of

G/GT onto Gy/Gy, and iry is an o-isomorphism of Gy/Gy into R. Next

assume that 7Gr satisfies (4). Then G/Gy^{(a', a)\a'EG/Gy and

aEGy/Gy] and (a', a) + (b', b) = (a'+b', f(a', b')+ar(b')+b) where r
is a nontrivial homomorphism of G/Gy into the group A of o-auto-

morphisms of Gy/Gy. Let ir =Tnriwn where ir8 is the natural o-homo-

morphism of G onto G/Gy, ire is an isomorphism of A into P, and in

is an isomorphism of P onto R. Finally suppose that yET satisfies

(5). Then G/Gy=B®D. Let T=<bywsiry where ir% is a projection of

G/Gy onto B.
Remark. The above proof indicates (and it is easy to prove) that

there exists a nontrivial o-homomorphism of G into R if and only if G

covers a convex subgroup.

The first two of the following examples have been used in the

previous discussion.

4.1. An abelian o-group with all components o-isomorphic to Rthat

is not d-closed. Let A be the large direct sum of the groups 2?,- where

Ri = R fori= — 1, —2, —3, • • • . Define a = ( • • ■ , a,-, • • • ) positive

if a is not the identity and the nonzero component with largest sub-

script is positive. Then A is an abelian o-group (with rank w*), and

every component is o-isomorphic to R. In fact A is d-closed. Let B

be the subgroup of A generated by the small direct sum of the R( and

the element eEA all of whose components are 1. Then B is not

d-closed. For 2x=e has no solution in B.

4.2. An o-group with no d-closed a-extension. Let K = integers (with

their natural order). Let r=A\Joo where k< «> for all kEK. Let A

be the small direct sum of the groups Rt where R{=R for all iEK.

Then A is an abelian o-group (where the order is defined as in Exam-

ple 4.1). For a = ( ■ • • , ait • • • )G-<4 we define a<r = ( ■ • • ,h, • • • )
where 6,=a,_i for all iEK. Clearly <r is an o-automorphism of A. Let

C be the cyclic subgroup of the group of all o-automorphisms of A

that is generated by a. Then the mapping of kEK onto ak is an iso-

morphism of the group (K, +) onto C. Finally let G = A:X.4, and

define (*, a) + (j, b) = (i+j, aa'+b). Then (with the usual ordering)

G is an o-group. In fact G is a splitting extension of A by K. (0, a)
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•ir[(l, 0)] = (0, oo-) where ir[(l, 0)] is an inner automorphism. Hence

7r[(l, 0)] induces the o-permutation k—>k + l of K. Now assume that

there exists an a-extension H of G that is d-closed. Then H contains

an element h such that 2h = (1, 0). Then ir(h) must induce an o-permu-

tation r of K such that kr2 = k + l. But this is impossible.

Remark. By similar reasoning it can be shown that no a-extension

of G has its last component d-closed.

4.3. An abelian o-group is d-closed and has every component o-iso-

morphic to R, but is not a-closed. Let T have the order type of the reals

and let Ry=R for every yGT. Then the small direct sum of the Ry

satisfies the above conditions.

Finally we consider the following four properties of an o-group G:

(A) G is a-closed. (B) Every component of G is d-closed. (C) Every

component of G is o-isomorphic with R. (D) G is d-closed. By the

previous theorems, examples, remarks, and the results stated in the

introduction the 28 logical relationships between these properties are

accounted for except whether or not (A), (B), and (C) imply (D).
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