ON SEPARATING TRANSCENDENCY BASES FOR DIFFERENTIAL FIELDS

A. SEIDENBERG

Let F be an arbitrary ordinary differential field ${ }^{1}$ of characteristic $p \neq 0$, and let $F\left\langle u_{1}, \cdots, u_{n}\right\rangle$ be a differential extension field of F of degree of differential transcendency t. In [1, p. 189], we stated a theorem which, as far as wording is concerned, is analogous to a wellknown theorem of S. MacLane in ordinary algebra. This theorem of ours states that if $F\left\langle u_{1}, \cdots, u_{n}\right\rangle / F$ is separable, then some t of the u_{i} form a separating transcendency basis, i.e., for an appropriate relettering of the $u_{i}, F\left\langle u_{1}, \cdots, u_{n}\right\rangle$ is separable over $F\left\langle u_{1}, \cdots, u_{t}\right\rangle$. The object of the present note is to establish the following stronger version of that theorem. ${ }^{2}$

Theorem. If $F\left\langle u_{1}, \cdots, u_{n}\right\rangle / F$ is separable, then any transcendency basis of $F\left\langle u_{1}, \cdots, u_{n}\right\rangle / F$ is also a separating transcendency basis.

Proof. We first prove that any t of the u_{i} which form a transcendency basis also form a separating transcendency basis. The theorem will then follow for any transcendency basis v_{1}, \cdots, v_{t} since obviously we may include the v_{j} amongst the u_{i}.

For $t=0$, there is nothing to prove. Confining ourselves to transcendency bases selected from the u_{i}, the theorem is also immediate for $t=n$. Consider next the case $t=n-1$, and let u_{1}, \cdots, u_{n-1} be algebraically independent over F. By [1, p. 188, Theorem 6, Corollary], the $u_{i j}, i=1, \cdots, n-1 ; j=0,1, \cdots$, are algebraically independent over F. By the definition in [1, p. 183], $F\left\langle u_{1}, \cdots, u_{n}\right\rangle$ is finite over $F\left\langle u_{1}, \cdots, u_{n-1}\right\rangle$, so for some $d, u_{n d}$ is algebraic over $F\left\langle u_{1}, \cdots, u_{n-1}\right\rangle\left(u_{n 0}, \cdots, u_{n, d-1}\right)$. Let d be minimal, i.e., $u_{i j}, u_{n k}$, $i=1, \cdots, n-1 ; j=0,1, \cdots ; k=0, \cdots, d-1$, are algebraically

Presented to the Society, December 29, 1954; received by the editors October 27, 1954.
${ }^{1}$ Definitions, notation, and terminology will be as in [1].
${ }^{2}$ The proof of the weaker theorem in [1; p. 189], though essentially correct, is too compressed; and we would like to add one remark to that proof. Let $G, U_{n r}$ be as in the proof; replacing G by a derivative if necessary, we may suppose G involves no proper derivative of $U_{n r}$. As $G\left(u_{1}, \cdots, u_{n-1} ; u_{n 0}, \cdots, u_{n, r-1}, U_{n r}\right)=0$ is not necessarily a defining equation for $u_{n r}$, the separability of $u_{n r}$ over $F\left\langle u_{1}, \cdots\right.$, $\left.u_{n-1}\right\rangle\left(u_{n 0}, \cdots, u_{n, r-1}\right)$ does not yet follow from the form of G. That separability would follow, however, if we had that $\partial G / \partial U_{n r} \neq 0$ for $U=u$: this we have because of the minimal degree of G. With this additional point in mind, it is not difficult to fill the slight gaps which occur in the proof as it now stands in [1].
independent over F, but $u_{n d}$ is algebraically dependent on this set over F. Let A be the set of polynomials $\{G\}$ in the polynomial ring $F\left\{U_{1}, \cdots, U_{n}\right\}$ such that $G \neq 0, G$ is of degree 0 in $U_{n i}, i>d$, and $G\left(u_{1}, \cdots, u_{n}\right)=0$. Let B be the subset of A consisting of the polynomials of minimum total degree. Let $G \in B$. The separability of $F\left\langle u_{1}, \cdots, u_{n}\right\rangle / F$ implies that $G \notin F\left[\cdots, U_{i j}^{p}, \cdots\right]$. Not all the $U_{n i}, i \leqq d$, occurring in G occur with exponent divisible by p. In fact, assume otherwise. Since not all the exponents occurring in G are divisible by p, at least one of the $U_{j k}, j=1, \cdots, n-1$, say $U_{1 h}$, occurs in G with exponent not divisible by p; we may suppose that derivatives of $U_{1 h}$, if they occur in G, occur with exponents divisible by p. The derivative G^{\prime} of G also is in A and in B; so replacing G by a derivative if necessary, we may suppose G involves no proper derivative of $U_{1 h}$. With these assumptions on G, we have: (1) degree of G^{\prime} in $U_{1, h+1}$ is 1 , degree of G^{\prime} in $U_{1 j}, j>h+1$, is 0 ; (2) coefficient of $U_{1, h+1}$ in G^{\prime} does not vanish at $U=u$, since it is of too small degree to be in A. Hence $u_{1 j} \in F\left\langle u_{2}, \cdots, u_{n-1}\right\rangle\left(u_{n 0}^{p}, \cdots, u_{n d}^{p} ; u_{10}, \cdots\right.$, $\left.u_{1, h}\right), j \geqq 0$. Since $F\left\langle u_{1}, \cdots, u_{n}\right\rangle / F\left\langle u_{1}, \cdots, u_{n-1}\right\rangle$ is finite, for some $r, r \geqq d$, we have $u_{n j} \in F\left\langle u_{1}, \cdots, u_{n-1}\right\rangle\left(u_{n 0}, \cdots, u_{n r}\right), j \geqq 0$. This last field may be written as $F\left\langle u_{2}, \cdots, u_{n-1}\right\rangle\left(u_{n 0}, \cdots, u_{n r} ; u_{10}, \cdots, u_{1 h}\right)$, whence $F\left\langle u_{1}, \cdots, u_{n}\right\rangle / F\left\langle u_{2}, \cdots, u_{n-1}\right\rangle$ is finite. This contradicts the assumption $t=n-1$. Hence for any given $G \in B$, at least one $U_{n j}$, $j \leqq d$, occurs with exponent not divisible by p. Differentiating G sufficiently often we may suppose that $U_{n d}$ occurs in G with exponent not divisible by p. Since $u_{i j}, u_{n k}, i=1, \cdots, n-1 ; j=0,1, \cdots$; $k=0, \cdots, d-1$, are algebraically independent over F, we have that $G\left(u_{i j}, u_{n k}, U_{n d}\right)=0$ is an irreducible (separable) equation for $u_{n d}$ over $F\left(u_{i j}, u_{n k}\right)$. Hence $F\left\langle u_{1}, \cdots, u_{n}\right\rangle$ is separable over $F\left\langle u_{1}, \cdots, u_{n-1}\right\rangle$. This completes the proof for $t=n-1$.

For $0<t<n-1$, we apply the Theorem of the Primitive Element. In the application, no separability condition is required (as in ordinary algebra-see the remarks in [1, p. 183, bottom of page]), but we do need to know, or rather, it would be sufficient to know, that $F\left\langle u_{1}, \cdots, u_{t}\right\rangle$, where u_{1}, \cdots, u_{t} is any given transcendency basis, has no finite linear basis over its field of constants. Even if $F\left\langle u_{1}, \cdots, u_{t}\right\rangle$ had a finite linear basis over its field of constants, we could overcome this difficulty by the well-known device of adjoining an appropriate nonconstant element to $F\left\langle u_{1}, \cdots, u_{n}\right\rangle$. Here we may as well determine the constants of $F\left\langle u_{1}, \cdots, u_{t}\right\rangle$. If F_{0} is the con-stant-field of F, then we shall see that the constant field of $F\left\langle u_{1}, \cdots\right.$, $\left.u_{t}\right\rangle$ is $F_{0}\left(\cdots, u_{i y}^{p}, \cdots\right)$. Assuming this for a moment we see that $F\left\langle u_{1}, \cdots, u_{t}\right\rangle$ has no finite linear basis over its field of constants,
whence $F\left\langle u_{1}, \cdots, u_{n}\right\rangle=F\left\langle u_{1}, \cdots, u_{t} ; w\right\rangle$. By the case $t=n-1$, then, the basis u_{1}, \cdots, u_{t} is separating.

Since $F\left\langle u_{1}, \cdots, u_{t}\right\rangle / F$ is separable, the $u_{i j}$ are, as previously mentioned, algebraically independent: the converse is immediate.

Lemma. Let F be a differential field of characteristic $p \neq 0, F_{0}$ its field of constants, and assume that $F\left\langle u_{1}, \cdots, u_{t}\right\rangle / F$ is separable and of degree of differential transcendency t. Then $F_{0}\left(\cdots, u_{i j}^{p}, \cdots\right)$, $i=1, \cdots, t ; j=0,1, \cdots$, is the field of constants of $F\left\langle u_{1}, \cdots, u_{t}\right\rangle$.

Proof. Let $P(u) / Q(u) \in F\left\langle u_{1}, \cdots, u_{t}\right\rangle$ be a constant $\neq 0$, where $P(u), Q(u)$ are elements of the polynomial ring $F\left\{u_{1}, \cdots, u_{t}\right\}$, and P and Q have no common factor of positive degree. We first assert that $P, Q \in F\left[\cdots, u_{i j}^{p}, \cdots\right]$. For suppose this is not the case, and say $Q \notin F\left[\cdots, u_{i j}^{p}, \cdots\right]$. Then Q^{\prime} is not zero, and $P / Q=P^{\prime} / Q^{\prime}$. Since degree of $P=$ degree of P^{\prime} and degree of $Q=$ degree of Q^{\prime}, we get $P^{\prime}=d P, Q^{\prime}=d Q$ for some $d \in F, d \neq 0$. Repeating the argument, we get $P^{(i)}=d_{i} P, Q^{(i)}=d_{i} Q$, where $d_{i} \in F$ and the superscript indicates the i th derivative. Since $Q^{(i)}$ for sufficiently high i involves some $u_{j k}$ not occurring in Q, we have a contradiction. Thus $Q \in F[\cdots$, $\left.u_{i j}^{p}, \cdots\right]$, and similarly for P. Let $P=\sum a_{i} \pi_{i}^{p}, Q=\sum b_{i} \pi_{i}^{p}$, where $a_{i}, b_{i} \in F, a_{i} b_{i} \neq 0$, and the π_{i} are power products of the $u_{j k}$ with $\pi_{i} \neq \pi_{j}$ for $i \neq j$. If $Q^{\prime}=0$, then each b_{i} is a constant, since $Q^{\prime}=\sum b_{i}^{\prime} \pi_{i}^{p}$ $=0$; and likewise the a_{i} are constant; so $P(u) / Q(u)$ has the required form if $Q^{\prime}=0$. Assume $Q^{\prime} \neq 0$: then as above we have $P^{\prime}=d P, Q^{\prime}=d Q$, $d \in F, d \neq 0$. This yields $a_{i}^{\prime}=d a_{i}$, whence any two a_{i} have a constant ratio. Thus $P=e \sum a_{i} \pi_{i}^{p}, Q=f \sum b_{i} \pi_{i}^{p}$, where now the a_{i}, b_{i} are in F_{0}. Since P / Q and $\sum a_{i} \pi_{i}^{p} / \sum b_{i} \pi_{i}^{p}$ are constants, so is e / f. Thus P / Q has the desired form. This completes the proof.

Reference

1. A. Seidenberg, Some basic theorems in differential algebra (characteristic p,arbitrary), Trans. Amer. Math. Soc. vol. 73 (1952) pp. 174-190.

University of California, Berkeley

