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The simplest and most familiar compact connected space which

can be provided with the structure of a (topological) group is the

simple closed curve C (topological circle). Perhaps the most natural

example of a compact connected (topological) semigroup is the closed

unit interval 7 with the usual multiplication. The space C admits

the unique structure of a group, whereas simple examples show (see

Examples 1, 2, 3) that the space 7 admits many structures of a semi-

group. Such multiplications need not be abelian, may admit both

nilpotents and idempotents, and may not have a zero element.

In this note we initiate the analysis of the semigroup structures

with which the space 7 may be provided. While our theorems are

much more general, the following corollary will give a fair picture of

our results. Suppose that 7 admits such a multiplication that its end

points play the natural roles of zero and unit. If there are no other

idempotents and no nilpotent elements except zero, then the multi-

plication must be that of the real numbers. The major step in the

proof is that of showing that unique <?th roots exist for any positive

dyadic rational q.

It is with pleasure that we acknowledge the helpful suggestions

and advice of A. D. Wallace in the preparation of this paper.

We define a mob to be a Hausdorff space together with a continu-

ous, associative multiplication. A clan is a compact connected mob

with unit. If S is a mob, a set TQS is a left (right) ideal if TVQ

and ST(ZT(TS(ZT). A two-sided ideal is both a left and right ideal.
Using Clifford's terminology [l], we shall denote the minimal two-

sided ideal of a mob 5 by K and the set of idempotents of 5 by E.

By a zero element, we mean an element 0, such that 0x = 0=x0 for

all x£5. We define an element s to be nilpotent if s" = 0, for some

positive integer n.

A connected space S is irreducibly connected between two points

a and b if no proper connected subset of 5 contains both a and b.

In such a space, every point different from a and b is a cut point,

separating the space into exactly two components [6]. We can intro-
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duce a linear order relation in S by defining y <x if yCC, C the com-

ponent of b in 5\{x}. This order induces a topology in S. Since we

wish to use the order topology in this paper, we observe that if 5 is

compact the order topology is equivalent to the original topology of

5. Consider

/: (S, U) ->(S, V)

where U is the original topology of S, V the order topology and / the

identity function. Since FC U and 5 is compact, / is a homeomor-

phism, establishing our assertion that the two topologies are equiva-

lent. In this paper if zero is anon-cut point, we shall define the order

relation in 5 so that O^x, xCS. We shall also denote

[s,t] = {y:yeS,s^y^t}.

The set [s, t] is compact and by an easy argument is seen to be

irreducibly connected between 5 and t.

Lemma 1. Let S be a compact connected mob and tCS\K, K the

minimal two-sided ideal of S. If S\{t\ =A^JB, A\B, KCA, then
St, tSand StSCA*.

Proof. Let J be the union of all left ideals of 5 contained in A.

Since KCA, Jt*\Z\ and J is a left ideal. Since / is open [3] and 5 is

connected, it follows that tCJ*. Since /* is an ideal, StCSJ*CJ*

CA*. Similarly tSCA* and StSCA*.
We observe that this lemma gives a new proof of the result that

if 5 is a clan no element of H(u), the maximal subgroup containing u,

the unit of S, cuts 5 [S].

Lemma 2. If S is a clan with zero and S is irreducibly connected

between u and 0, then Sx=xS= [0, x]for all xCS.

Proof. Obviously [0, x]C-Sx and equality follows from Lemma 1.

It is of interest to remark that if we define y^x if and only if

ySCxS and SyCSx, then by virtue of Lemma 2 this order relation,

derived from the algebraic structure of 5, coincides with the order

relation derived from the topological structure of S.

Lemma 3. Let S be a clan with zero and let S have no idempotents other

than zero and unit. If S is irreducibly connected between u and 0, then

S is abelian. Further, S contains a countable dense set and is a homeo-

morph of the unit interval of real numbers.

Proof. Let A" be the diagonal of the Cartesian product of 5 n

times. For each w define/„: An—>S by/„(y) =xn where x is the projec-

tion of y into S. Since/„ is continuous, fn(An)CS is a connected set
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containing u and 0 and is therefore equal to 5. This implies that/n is

onto and in particular, that any x£5 has an «th root.

We now assert that if x^O, then x has a unique square root. Sup-

pose there exist elements c and d, such that c2 = d2 = x. We may as-

sume d<c and, by Lemma 2, d = ac = cb for some a, &£S, a, b^u.

We now have c2b=xbgx. We claim xb=x, otherwise we would have

a contradiction to Lemma 2 since a(xb) =ac2b = d2=x. But xb=x im-

plies thatx£n«"-i Sbn = Se where e££ and e(=T(b) = {b, b2, b3, • • • }*

[2; 4]. However since b^u, it follows from Lemma 1 that the only

idempotent in T(b) is 0 which is a contradiction. This establishes,

that for xj^O, x has an unique square root, and by induction that x

has unique 2mth roots, where m is any positive integer.

Let us define for x£5, x^O,

(x"'2") = (x^2")p

p and q being positive integers. Straightforward verification estab-

lishes that we can now write

(1.1) xrx' = XT+*

where r and s are positive dyadic rationals.

For x£5, Xt^O, u, let

D = { xr: r a positive dyadic rational}.

D is an abelian submob by (1.1) and we claim that D* = S. That D

meets every open neighborhood of 0 follows from the fact that

0£r(x). If V is a basis element in the order topology containing u

and if y£ V, y^u, then y2 <x for some positive integer n. We can

easily verify that x1/2"£ V.

Let t be an arbitrary element of S, t^O, u, and let B= [s\ a<s<b\

be an arbitrary basis element in the order topology containing t.

Without any loss of generality we can assume 0<a<b<u. Let

R' = {r I xT = b, r a positive dyadic rational},

R" = {r | xr g a, r a positive dyadic rational}.

R' and R" are nonempty and have upper and lower bounds respec-

tively. Let r' be the l.u.b. of R' and r" the g.l.b. of R". Clearly

r'gr" otherwise we would have an immediate contradiction to

Lemma 2. If r'<r", D meets B. Therefore assume r'=r". Let {pn)

be a monotone increasing sequence of dyadic rationals converging

to r'. The sequence {x""} is monotone decreasing in 5 and since 5 is

compact, clusters at some point c^b. But in view of Lemma 2,

{xPn} converges to c. Let IF be an open set, c£IF, such that W(~\ [0, a]
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= □• By the continuity of multiplication, there exist open sets U

and V, uEU, cCV, such that UVCW. But DCW^U; therefore

x'CU for some r. There exists a pk in the sequence {pn\ such that

xMG Vand r +pk >r'= r". This implies that xrxM = xr+pkG [0, a], which

is a contradiction. It follows that D* = S and that 5 is abelian.

Since D is a countable dense set and 5 is compact, S is homeo-

morphic to /, the unit interval of real numbers [6].

Theorem 1. If S is a compact mob irreducibly connected between two

idempotents f and g and contains no other idempotents, then S is abelian

and homeomorphic to I.

Proof. Since 5 is compact, 5 has a minimal two-sided ideal K,

K = (i{H(e): eCEC^K), where H(e) is the maximal subgroup con-

taining e [l]. S, a compact connected linearly ordered space, cer-

tainly has the fixed point property. Since H(e) =eSe is a retract of S,

H(e) has the fixed point property and consequently H(e)=e. Hence

every element in K is idempotent. Since K is connected, K=f or

K = g. If K=f,f is a zero for 5 and g is a unit since gS = Sg = S. The

conclusion follows from Lemma 3.

Theorem 2. Let S satisfy the hypotheses of Theorem 1 and in addi-

tion let S contain no nilpotent elements. Then there exists a function f

from S to I that is an isomorphism as well as an order-preserving homeo-

morphism.

Proof. Fix xCS, Xt*0, u, and let

D = ji'ira positive dyadic rational}.

As shown in Lemma 3 and Theorem 1, D is a countable dense set in

5. Furthermore we assert we have the relation

(1.2)       xr < x"    if    s < r, s and r positive dyadic rationals.

By Lemma 2 and (1.1) in Lemma 3, we have xr^xs if s<r. Suppose

xr = x* and r = s+t for some t, t a dyadic rational. By (1.1) we have

xT=x,+t=x*xt = x". Therefore x'GDn-i S(xt)n = Se where eET(x')

[2; 4]. But by the same type of argument used in the proof of

Lemma 3, e = 0, which implies that x* = 0, a contradiction since 5

contains no nilpotent elements.

We define g: D-+I by g(xr) = (l/2)r. We define /: S-+I by f(u) = 1

and, for St*u, /(j)=g.l.b. {g(xr): xr^s}. Clearly f\D=g\ that is,

/(xr)=g(xr) = (l/2)r. From (1.2) and the fact that D is dense in S,

we have
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(1.3) a, b £ S,    a < b   implies   f(a) < f(b).

It is immediate from this relationship that / is an order-preserving

homeomorphism.

It remains to be proved that/ is a homomorphism. For a, &£S we

claim f(ab)=f(a)f(b). Suppose f(ab)>f(a)f(b). This implies there
exist r' and r", dyadic rationals, such that (l/2)r'^/(a) and (l/2)r"

^f(b) and f(ab)>(l/2)r'+r". But xr'^a and xr"^b implies that

x''+'"^ab, whence, by (1.3), f(ab) ^f(xr'+r") = (1/2)''+"", a contra-

diction. On the other hand assume f(ab)<f(a)f(b). There exists a

dyadic rational t such that t>t'+t" and f(ab)\ <(l/2)t<f(a)f(b),
where

t' = l.u.b. jfira dyadic rational, xr = a},

t" = l.u.b. {r: r a dyadic rational, xr j& b}.

By (1.3), xl>ab. By the continuity of multiplication in 5 and the

fact that D is dense, there exist r' and r", such that xr"^a and

xr'"^b and x'>xr'+r"^ab. But this is a contradiction to (1.2) since

by the choice of /, t>r'-\-r". This completes the proof that f(ab)

=f(a)f(b).

Lemma 4. Let S be a compact mob with zero and let S be irreducibly

connected between two points. If S'=[f,e], where e andf are idempotents,

and iff acts as a zero on S', then S' is a submob.

Proof. Let

M = {5: 5 £ 5, e < s},

N = {s:seS,s </}.

Clearly if 0^/, 0£iV. By Lemma 1 we have S'xC\M=n for all

x£5'. Suppose S'xf^N^Cl for some x£5'. Consequently there

exists y£5' such that yx£Ar. Let D= [x, e]. Since e acts as a unit on

S', y(EyD- Therefore there exists d£7>, with x<d, such that yd=f.

But x = dt, <£5', and we have yx=ydt=ft=f, a contradiction. This

establishes that S' is a submob.

Lemma 5. Let S be a clan with zero. If S is irreducibly connected be-

tween u and 0, then S is abelian.

Proof. Let x be an arbitrary element of 5. If x££, the set of

idempotents of S, then for y <x, we have y£5x = x5 and yx = xy=y.

On the other hand, if x<y, then x=ya = by for some a, 6£5. We as-

sert xy=x, otherwise x = x2 = x(yti) =(xy)agxy<x. Similarly we

show yx=x.
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If xG-E, let

r = [x, u] C\ E,

T" = [0, x] n E.

T' and T" are non-null compact linearly ordered subsets of 5 and

certainly have maximal and minimal elements. Let e be the minimal

element of T' and/ the maximal element of T". If S'= [f, e], S' is a

compact abelian submob by Lemmas 3 and 4. Hence x commutes

with y if yCS'. As we have already observed for y>e, ye=ey = e, and

for y </, yf =fy = y. Therefore we have yx = yex = ex=x = xe = xey = xy

if y>e. On the other hand if y </, yx=yfx=yf = y=fy=xfy = xy.

Theorem 3. Let S be a clan. If S is irreducibly connected between two

idempotents, then S is abelian if and only if S has a zero.

Proof. Assume 5 has a zero. By Lemma 1, the unit of S is one of

the two non-cut points of S. If the other idempotent is the zero

element of S, S is abelian by Lemma 5. Otherwise let S'= [0, u] and

S" = [e, 0] where e is the other non-cut point of S. S' is a compact

abelian submob by Lemmas 4 and 5. A slight modification of the

method of proof used in Lemma 4 establishes that eS' = S'e = S". To

complete the proof it is sufficient to show that e commutes with every

element of S'. This is immediate since xe = exe = ex for all xCS'.

Conversely, noting that 5 has the fixed point property, we con-

sider the sets, P(s) = {x \ xs = xJ, s G S. The collection <P= \P(s)\sCS\

is a collection of non-null closed sets. Since 5 is abelian, it is easily

verified that <P has the finite intersection property. Therefore

RP^D, which establishes that 5 has a zero. As an alternate proof,

we recall the observation made in the proof of Theorem 1 that if 5

has the fixed point property, the maximal subgroups in K are single

elements. The known result that K is a group if K meets the center

of S [2] implies that K is trivial, therefore a zero.

Theorem 4.2 If S is a compact connected mob irreducibly connected

between two idempotents e and /, then S is abelian if and only if S has a

zero and ef=fe.

Proof. If 5 is abelian, S has a zero by the same argument as in

Theorem 3 and obviously ef=fe.

To establish the sufficiency, assume ef=fe and that S has a zero.

If either e or/ is the zero element of S, the other is obviously a unit

2 The author is indebted to the referee for suggestions improving the proof of

Theorem 4.
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for 5 and the result follows by Theorem 3. Otherwise, let S'= [0, e]

and 5"= [/, 0]. S' and S" are abelian submobs by Lemmas 4 and 5.

Suppose e/£5". Let T= [ef, e]. By Lemma 1, T is an ideal, and it

follows that T=Se = eS. Since e/£7i, T is abelian by Theorem 3. To

prove the theorem it suffices to show x<ef and ££7" imply xt = tx.

Now xt = (xf)(et) =(xef)t, and xe/£F by Lemma 1. Hence (xef)t

= t(xef) =t(xf)e = txe = (te)(xe) =t(ex)e = te(ex) =(te)x = tx. This com-

pletes the proof.

Example 1 (E. Calabi). Let 5 be the set of all real numbers x

such that 1/2^x^1. For x, y<E.S define the product of x and y to

be the max (1/2, xy). 5 is a clan with zero and every element in 5

other than the unit is nilpotent. 5 is homeomorphic with the Euclid-

ean straight line interval 7 but is clearly not algebraically isomorphic

with 7.

Example 2. Consider the following set

S is a clan irreducibly connected between two idempotents that com-

mute. But 5 does not have a zero and 5 is not abelian.

Example 3. Consider the following set

5 is a compact connected mob with zero and is irreducibly connected

between two idempotents that do not commute. Hence 5 is not abel-

ian.

Examples 2 and 3 show that the sufficiency conditions cannot be

eliminated in Theorems 3 and 4.
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