
TOPOLOGICAL SEMIGROUPS AND CONTINUA
WITH CUT POINTS1

W. M. FAUCETT

In this paper we are concerned with continua that possess cut

points and that admit the structure of topological semigroups, herein

called mobs. First, we discuss the relations between the existence of

cut points in compact connected mobs and the algebraic structure of

the mob. Next, we consider D-chains, as defined by Remage [6], in

compact connected mobs. D-chains may be considered to be general-

izations of the classical A -sets. In the final section, we center our

attention on compact metric trees, or dendrites, that are mobs and

show that under certain circumstances the algebraic structure of the

non-cut points has a marked influence upon the algebraic structure

of the entire mob.

The author wishes to acknowledge the advice and helpful sugges-

tions of Professor A. D. Wallace in the preparation of this paper.

1. We define a mob to be a Hausdorff space together with a con-

tinuous associative multiplication. A submob in a mob 5 is a nonvoid

set T contained in 5 such that TTCT. A clan is a compact connected

mob with unit. A left ideal of a mob 5 is a nonvoid set T, TCS, such

that STCT. Right ideals and two-sided ideals are defined in the

obvious manner. In this paper, we follow the terminology of Clifford

[l] and shall reserve the letter K to denote the minimal two-sided

ideal and the letter E to denote the set of idempotents. The symbol

0 will designate the null set and the symbol * the Kuratowski clo-

sure operator.

The following lemma was stated and proved in [2 ] but we include

it here for completeness.

Lemma 1.1. Let S be a compact connected mob and let tCS\K, K the

minimal two-sided ideal of S. If S\t = AVJB, A\B, and if KCA, then
St, tS, and StS are contained in A *.

Proof. Let J be the union of all left ideals of 5 contained in A.

Since KCA, J is non-null. As J is open [4] and 5 is connected, it fol-

lows that tCJ*. Since J* is a left ideal, StCSJ*CJ*CA*. Simi-
larly, tSCA* and StSCA*.
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Let us define a two-sided ideal T of a mob 5 to be a prime ideal

provided that whenever S\T is non-null then S\T is a submob.

Theorem 1.1. Let S be a clan and let z be an element of S such that

S\z = A\JB, A\B. If A is a two-sided ideal, then A is a prime ideal if
and only if 2£E.

Proof. If A is a prime ideal, then B* is a submob and 22£7S*. The

left ideal A meets the right ideal K. Since K is minimal, it follows

that KCA. By Lemma 1.1, z2GA*. Thus z2EA*C\B*=z. Hence

zGE.
Conversely, assume 2££. For any &££*, Sb is a connected set

that meets B* and A. It follows that z(£Sb; that is, b'b=z for some

b'(£S. Similarly, there exists &"£5 such that bb" = z. Now suppose

that for some x, y(E.B*, xy^A. There exists x' and y" such that

x'x = z = yy". Thus x'(xy)y" = (x'x)(yy") =z2 = z(£S\A. Since A is a

two-sided ideal, this is a contradiction. This establishes that B* is a

submob, which implies that A is a prime ideal.

For any set A contained in a mob S, let L(A)=0 if A contains

no left ideals of S. Otherwise, let L(A) be the union of all left ideals

of 5 contained in A.

Theorem 1.2. Let S be a compact connected mob and let e£7i\iL

Further, let C be the component of S\e containing K. If L = L(S\e),

then (S\L)e(ZF(L). Moreover, if C is a left ideal, then (S\L)e = e.

Proof. Since KCS\e, L^0. Let

L' = {x\xeEL}.

L' is a left ideal contained in S\e. Thus L'CZL. Hence x£5\L implies

xe£7. But since 5 is connected and since L is open [4], it follows

that e£L*. Therefore, if x^S\L, then xe(EL*\L. Since L is open,

L*\L = F(L).
Now SL\JK is a connected set that is contained in S\e and meets

C. Hence SLCZC and SL*C.C*. Therefore, since x£S\L implies

xe£L and e is an element of L*, we have (S\L)eCSL*\LC.C*. If C

is a left ideal, then CCL. Hence (S\L)eCSL*\LCSL*\CCC*\C.
But since S is connected, e£C*, and because C is closed in S\e, it

follows that C*\C = e.

Theorem 1.3. Let S be a compact connected mob. If there exists a

point PES that cuts K, then either (i) K = Sp, K is a minimal left ideal,

and every element of K is a left zero for S; or (ii) K = pS, K is a minimal

right ideal, and every element of K is a right zero for S.
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Proof. Ket K\p=A\JB, A\B. Clearly pEK, since K is con-

nected. As K is the union of disjoint groups, pCH(e)=eSe, where

H(e) is the maximal subgroup containing e for some eEEf~\K [l].

We claim p=H(e). Suppose H(e)\p9*0. Since H(e) is a compact

connected topological group, H(e)\p is connected. Therefore, H(e)\p

CA,or H(e)\pCB. AssumeH(e)\pCA. For all bCB, bSb is a com-

pact connected topological group that meets B. Since the maximal

subgroups are disjoint, bSb must be disjoint from pSp, as pSpCA*.

Therefore, we have bSbCK\p=AVJB. Since bSb is connected and

meets B, bSbCB for all bCB.

As we have assumed H(e) to be nontrivial, there exists yCS such

that pypf*p. Therefore, pypCH(e)\pCA. Since ACS\B*, there

exists an open set U such that pypC U and U(~\B = 0. By the con-

tinuity of multiplication, there exist open sets V and V, pEV and

pCV, such that VyV'CU. Let W=VT\V. But since pCB*,
WC\Bt*0. Thus bybCU for some bCWf\B. But this contradicts

the fact that bSbCB for all bCB.
We have established that H(e)=p. Since the maximal subgroups

of K are topologically equivalent [5], it follows that every maximal

subgroup consists of a single element and that every element of K

is an idempotent.

For any kCK, Sk(kS) is a minimal left (right) ideal and Skf^kS

is a group containing k [l ]. Since in our situation every element of K

is idempotent, this intersection must be the single element k.

Fix b'CB. We assert that either b'SCB or Sb'CB. Suppose both

b'S and Sb' are not contained in B. Since b'Cb'S and b'CSb', these

two sets are not contained in A. Consequently, pCb'S and pCSb'.

But this is a contradiction since b'SC^Sb'' = b' 9*p. Thus either b'SCB

or Sb'CB. Say b'SCB.
For any aCA*, let us consider the minimal left ideal Sa. Since

aCSa, Sa(£B. But since every left ideal meets every right ideal and

since b'SCB, SaCtA. Therefore, pCSa for all aCA*.

We shall now show that pCSb for all bCB. First, let a' be an arbi-

trary element of A. We claim a'SC-<4- Suppose a'S(£A. Since

a'Ca'S, it follows that pCa'S. But we have just shown that pCSa'.

Consequently, we have pCa'Sr\Sa'. But this is a contradiction since

a'Sr^Sa' =a'. This establishes our assertion that a'SCA. For any

bCB, let us consider the minimal left ideal Sb. Since bCSb, Sb(£A.

But since every left ideal meets every right ideal and since Sa'CA,

Sb(tB. Consequently pCSb for all bCB.
We have now shown pCSk, kCK = A*[UB. Hence SpCSk and

since Sk is minimal, Sp = Sk for each k. Thus Sp = SK. But KCKK
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CZSKC.K, which implies K = Sp, a minimal left ideal.

It remains to prove that every element of K is a left zero for 5.

Let k' be an arbitrary element of K. As we have already shown,

k'Sr\Sk' = k'. But Sk' is a left ideal contained in K. Since K is a

minimal left ideal, Sk' = K. As k'SQK = Sk', we have k'Sr\Sk' = k'S
= k'. Thus k' is a left zero for 5.

We obtain the dual conclusion if we assume Sb'QB.

The existence of maximal proper ideals in compact mobs has been

discussed by Koch and Wallace [4]. In the next theorem we are con-

cerned with the complement of a maximal proper two-sided ideal in

a compact connected mob. We raise the query if the condition S2 = S

might not be replaced.

Theorem 1.4. Let S be a compact connected mob such that S2 = S.

If J is a maximal proper two-sided ideal of S, then for any closed set

MGA =S\J, the set S\M is connected.

Proof. Suppose S\M = P\JQ, P\ Q. Since K is connected and since

K(ZJ = S — A(ZS\M, we can assume KQP. Let T be the maximal

two-sided ideal of 5 contained in P. Since T is open [4 ] and since 5

is connected, it follows that PDM^0. For mCT*C\M, we have

SmSCT*. Now, TCPCPVM. Certainly, T*CP*C(PVM)*
= P\JM. Therefore SmSCT*CPUM. We claim SASCT*. UA=m,
our assertion is obvious. On the other hand, if A is nontrivial, it is

known that ACSmS [3]. Consequently, SASCSmSCT*CPVM.
By assumption, Qj£0. Since S2 = S, S = SES [4]. Thus for any

qEQ, qC-SeS for some e£E. We claim e£7. If e£^, then SeSCSAS

CP\JM=S\Q. SeS meets P since KQ.P and SeS meets Q since

qCSeS. Therefore, the connected set SeS meets M. But this is a con-

tradiction since e£7 which implies that SeS(ZJ=S\AC.S\M.

2. For any set N contained in a connected space S, let a(N)

= (S\N)*. A closed set N contained in 5 is a nodal set if (i) o-(N)^S

and (ii) Nr\cr(N) is at most a single point. If A7 is a nodal set and if

Nr^a(N) =2, we shall say there exists a nodal decomposition at z.

We shall use the notation o(z): S = N*U(S\N)* to denote a nodal

decomposition at the point z. It is clear that 2 is a cut point of S.

Conversely, if 2 is a cut point of S, then there exists a nodal decom-

position at 2.

For any non-null set A contained in S, we define D(A) to be the

intersection of all the nodal sets containing A. A 7)-chain is a set

A, A7^0, such that D(A) =A. If 5 is a continuum, then a 7?-chain is

a sub-continuum [6].

We shall now state without proof a result due to Remage [6].
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Lemma 2.1. Let S be a continuum. Let C be a D-chain and let U be an

open set containing C. If xCS\U, then there exists a nodal decomposition

8(z): S = NVJ(S\N)* such that zC U, CCN, and x&N.

The next lemma is an immediate consequence of the above result.

Lemma 2.2. Let S be a continuum, M a sub-continuum of S, and C a

D-chain contained in S\M. If P={p: PCS such that there exists

S(p): S = NV(S\N)*, CCN, MCS\N}, then P*C\Ct*0.

Lemma 2.3. Let S be a compact connected mob such that there exists

a nodal decomposition 8(p): S = N^J(S\N)*, with KCS\N. If A is a
subset of N such that for every aCA there exists eCEC\N with aCSe

(aCeS) and eCSa(eCaS), then Ap=p(pA=p).

Proof. Suppose there exists aCA such that ap9*p. Since KCS\N,

by Lemma 1.1 we have apCS\N. By hypothesis, there exists

eEEH\N such that aCSe. This implies that ae = a. Let D' =eSC\N.

Now eS is connected and is not contained in S\N since eCeS and

eCN. But eS is not contained in N since KCS\N and eS meets K.

Therefore, pCeS and pCD'- Now, D' is a continuum, being the

intersection of a continuum and a nodal set. Since apCaDT\(S\N)

and since ae=aCaD'(~\N, p is an element of aD'; that is, p=ad' for

some d'CD'- By hypothesis eCSa, which implies e = sa for some

sCS. Now, sp=sad'CSp, which is contained in (S\N)* by Lemma

1.1. But sp=sad'= (sa)d'= ed' and ed' = d' since d'CeS and e is a

left unit on eS. But this is a contradiction as d'CN\p = S\(S\N)*.

By duality pA =p.

Theorem 2.1. Let S be a compact connected mob and let C be a D-

chain contained in S\K. If C is a submob, then there exists xCC such

that xC = x = Cx.

Proof. Let

P = {p:pCS such that there exists 8(p) :S = NKJ (S\N)*,

CCN, KCS\N}.

Let K' be the kernel of the compact connected submob C. For

eCEC^K', H=eCe is a compact connected topological group. H

clearly satisfies the conditions required of the set A in Lemma 2.3.

Therefore for any pCP, Hp=p=pH. Since K' = U{eCe: eCEl^K'},

it follows that K'p=p=pK'.
Now T= {x: K'x = x = xK'\ is closed. As PCT, we have P*CT*

= T. But by Lemma 2.2, P*C\Ct*0, which implies that there exists

xGC such that K'x = x = xK'.
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Because Cx = C(K'x) = (CK')x = K'x = x and dually, the conclusion

is established.

Theorem 2.2. If Sis a compact connected mob and if A is a nontrivial

D-chain, then S\A is not a maximal proper two-sided ideal.

Proof. Suppose S\A = 7 is a maximal proper two-sided ideal.

Since 7 is an ideal, KCZS\A. Let

P = {p:p £ 5 such that there exists S(p):S = N U (S\N)*,

ACN, KCS\N}.

Let a be an arbitrary element of A. Since A is nontrivial, it is known

that there exists eEEf\A such that a£5e(a£e5) and e£Sa(e£<zS)

[3]. Hence A satisfies the hypotheses of Lemma 2.3. Thus Ap=p

=pA for all pEP.

Now since the set T={x: Ax = x = xA\ is closed and PQT, we

have p*QT* = T. By Lemma 2.2, P*C\A^0, which implies that

there exists x£^4 such that ^4x=x = x^4. Therefore, since 7Ux is a

two-sided ideal containing 7 properly, we have JVJx = S. But this

is a contradiction as A is nontrivial by hypotheses.

3. We define a tree to be a nontrivial continuum such that every

two points are separated by a third point. All the results in this sec-

tion have been established for the more general compact Hausdorff

case, but we shall consider only metric trees. We do this in order to

simplify the presentation by invoking the results in the literature on

metric trees.

The following results can be found in [8], or can be obtained by

trivial arguments. Any two distinct points in a metric tree are joined

by a unique simple arc. We shall denote the simple arc joining a and b

in a metric tree 5 by (a, b). The arc (a, b) is irreducibly connected

between a and b and every point of the arc different from a and b

separates a and b in 5. If M is a continuum contained in a metric

tree S and if x£5\Af, then there exists m'£M such that (m', x)C\M

= m'. Also every point of 5 is either a cut point or an endpoint.

Lemma 3.1. Let S be a mob. If S is a metric tree, then either every

element of K is a left zero, or every element of K is a right zero.

Proof. If K is a single element, the conclusion is trivial. Otherwise,

there exists a point in S that cuts K and the conclusion follows from

Theorem 1.3.

Lemma 3.2. Let S be a metric tree. Further, let S be a mob and
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eCE\K. If k'CK such that (k', e)(~\K = k', then (k', e) is a compact
abelian submob with e as a unit.

Proof. Since every point tC(k', e) different from k' and e separates

k' and e in S, we have S\t = A\JB, A \B, with k'CA and eCB. As K

is a connected set contained in S\t and K meets A, K is contained

in A. Now eS is a connected set meeting both A and B; hence tCeS.

Since eS is closed, it follows that (k'e)CeS. Dually for Se. Therefore,

e is a two-sided unit on (k\ e). Furthermore, (k', e) is irreducibly

connected between k' and e and we can define a linear order in (kr, e)

such that k'^d for all dC(k', e) [9]. We assert that if d'^d then

d'CdS and d'CSd. This follows from the fact that d' separates d

and K and dS and Sd are connected sets containing d and meeting if.

By Lemma 3.1, we may assume every element of K to be a left

zero or a right zero. Say every element of K is a left zero. Suppose

there exist x and y, x, yC(k', e), such that xyG(&'. «)• An easy argu-

ment shows there exists zG-S such that S\z=A\JB,A\B, xyCA and

(k', e)CB. As (k', e) can be linearly ordered, we define

T= {t:tC(k',e), y^t^e).

T is connected [9]. Since xyCxT and xCxT, it follows that zCxT;

that is, z = xt', for some t'CT. Since y <t', yCt'S. Thus y = t's', s'CS.

Now if 3r|A', KCS\z. Since k'CB and since if is connected, KCB.

We have 2i' = xi's' = xyG^4- But this is a contradiction since by

Lemma 1.1, zs'CB* = S\A. On the other hand, if zCK, we have

zs' = xt's' =xyj*z. But again, this is a contradiction since we have

assumed every element of if to be a left zero.

We have now shown (k', e) to be a compact submob. Indeed,

(k', e) is a compact submob irreducibly connected between two idem-

potents, one of which is a unit on (k', e). The other is a zero on (k', e),

in view of the following consideration. We already know that k' is a

left zero. But (k', e)k'C(k', e)C\K = k'. Therefore k' is both a left and

right zero on (k', e). As shown in [2], (k', e) is abelian.

If we assume every element in if to be a right zero, we obtain the

conclusion by duality.

Lemma 3.3. Let S be a mob and let k' be a left (right) zero for S. Let

N be the set of endpoints of S and let e be a unit for N, eCNC\E. If S

is a metric tree, then S = GN (NG) where G = (k', e).

Proof. Clearly NCGN since eCG and e is a unit for N. Also

k'CGN as k' is a left zero. Let x be a cut point, X9*k'. Thus S\x

= A\JB, A | B. Suppose k'CB. An easy argument shows NC\A*9*0.
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Let n£Nr\A*. Obviously, n^x. Gn is a connected set meeting A

and B. Therefore x£Gw. This completes the proof since every ele-

ment of 5 is either a cut point or an endpoint.

Theorem 3.1. Let S be a metric tree, and let N be the set of endpoints

of S. If S is a clan and if N is contained in the center of S, then S is an

abelian clan with zero.

Proof. If u, the unit of 5, is in K, then 5 is a compact connected

group and consequently does not contain a cut point. Therefore, S

cannot be a tree. Thus uQK. There exists k'EK such that (k', u)C\K

= k'. By Lemma 3.2, (k', u) is a compact abelian submob. Further,

by Lemma 3.1, we may assume k' to be a left zero for 5. By Lemma

3.3, S = GN where G=(k', u). Thus for any pair of elements x and x'

of S, we have x = gn and x'—g'n' for some g and g', elements of G,

and for some n and n', elements of N. Hence, xx' = gng'n' = gg'nn'

= g'gn'n = g'n'gn — x'x. This establishes that 5 is abelian. Since 5 is

abelian, the left zero k' must be a right zero also, hence unique.

Theorem 3.2. Let S be a metric tree and let N be the set of endpoints

of S. If S is a mob and if N is a group, then S has a zero. Further, if

N is an abelian group, then S is abelian.

Proof. Let e be the identity element of N. Now, e£7C. Otherwise,

e would be a left zero or a right zero by Lemma 3.1, contradicting

the fact that e is the identity element for the group N. There exists

k'EK such that (k', e)C\K = k'. By Lemma 3.3, S = GN, where

G=(k', e). If K = k', then certainly k' is a zero. Therefore, assume

k"EK\k'. Now k" = gn for some g£G, g^k', and for some ra£Ar.

Since N is a group, there exists d(n)EN such that nd(n) =e. There-

fore, k"0(n) =gnO(n) =ge. Since e is a unit on G, ge = gES\K. But this

is a contradiction since k"6(n) EK. This establishes that 5 has a zero.

It remains to be proved that if N is an abelian group then S is

abelian. Since k' = 0, we now let G = (0, e). By Lemma 3.3, S = GN = NG.

From this it follows that multiplication by elements of A7 is a homeo-

morphism on 5. By Lemma 3.2, G=(0, e) is an abelian submob.

Therefore, to establish the conclusion it is sufficient to show that

every element of N commutes with every element of G.

Fix nEN. Gn and nG are continua containing 0 and n and clearly

must be the unique arc joining 0 and n. Suppose for some g£G,

ngj^gn. Since both ng and gn are elements of the arc (o, n), which can

be linearly ordered, we may assume ng<gn. Let

T = {t:tE (0,n), 0 = t g ng}.
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T is compact and is irreducibly connected between 0 and ng [9]. Con-

sider the connected set d(n)Tn. The element 0 is contained in 6(n)Tn.

Also gnC0(n)Tn since 8(n)ngn = egn = gn. It follows immediately that

T is contained properly in dnTn. But this is a contradiction to the

known result that states that if T is compact and if TCaTb then

T = aTb [7].

Corollary 3.2.1. If S is a compact metric mob irreducibly connected

between two points that form a group, then S is abelian.
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