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In 1920 very little was known about the class of homogeneous,

bounded continua in the plane. At that time Knaster and Kuratowski

[l] raised the question:1 Is every such (nondegenerate) continuum a

simple closed curve? Mazurkiewicz [2] showed such a continuum

is a simple closed curve if it is locally connected, and I showed this

is the case if the continuum is aposyndetic [3]. H. J. Cohen [4]

proved that if a homogeneous, bounded, plane continuum contains

a simple closed curve, it is a simple closed curve. And finally I proved

that every homogeneous, compact continuum lying in but not sepa-

rating a plane is indecomposable [5].

So the class of homogeneous, bounded, plane continua may be

typed as follows:

Type 1. Those which do not separate the plane. (These must all be

indecomposable, and continua of Type 1 other than degenerate ones

are known to exist [6 and 7].)

Type 2. Those which are decomposable. (These must all separate

the plane, and continua of Type 2 other than simple closed curves are

known to exist [8].)

Type 3. Those which separate the plane but are indecomposable.

(Whether any of this type exists is not known. However, see [9,

Example 2, pp. 48-49].)

It is the purpose of this paper to show that each homogeneous,

bounded, plane continuum of Type 2 is either a simple closed curve

or becomes one under a natural aposyndetic decomposition,2 the

elements of the decomposition being mutually homeomorphic con-

tinua of Type 1. In other words, thinking of a plane as an upper semi-

continuous collection of continua (each lying in but not separating

a given plane), every continuum of Type 2 is the sum of the elements

of a simple closed curve lying in a plane of elements of Type 1.

Presented to the Society, September 2, 1954; received by the editors November 19,

1954.

1 Numbers in brackets refer to the bibliography at the end of this paper.

2 A continuum M is said to be aposyndetic provided that if * and y are dis-

tinct points of M, there exist a continuum K and an open (rel. M) set U such that

Af-jQ-O Ujx.
An aposyndetic decomposition [lo] is an upper semi-continuous collection of mutu-

ally exclusive continua filling up the given continuum and which with respect to its

elements (as points) is an aposyndetic continuum.
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It is convenient to establish the following more general decomposi-

tion theorem for homogeneous, compact continua lying in a metric

space. (A compact continuum lying in a regular, semi-metric space

or in a Moore space is itself a metric space.)

Notation. If x is a point of a continuum M, then Lx denotes x

together with all points y of M such that M is not aposyndetic at y

with respect to x and Ux denotes M—Lx.

Theorem 1. Suppose that M is a decomposable, homogeneous, com-

pact, metric continuum. Then there exists a nondegenerate continuous

collection G of mutually exclusive continua filling up M such that

(a) with respect to its elements (as points) G is a homogeneous, aposyn-

detic, compact, metric continuum, (b) if x is a point of M, then Lx is an

element of G, and (c) if g is an element of G and K is a subcontinuum

of M which contains both a point of g and a point of M—g, then g is a

subset of K.

Proof. If for some point x of M, Lx is degenerate, then all elements

of G are degenerate and M is aposyndetic. In this case, Theorem 1 is

obvious. So from here on, in this proof, it will be assumed that no ele-

ment of G is degenerate. It follows at once that (1) M is totally non-

aposyndetic.

Being totally nonaposyndetic, M contains a cut point [ll, p. 409].

Hence (by the homogeneity) (2) every point of M is a cut point of M.3

By [12, p. 501] some point of M does not cut any two (rel.) open

subsets of M from each other. Again by the homogeneity of M, (3) no

point of M cuts two (rel.) open subsets of M from each other.

Now for each point p of M, Up is the set of all points of M at which

M is aposyndetic with respect to p. Since M is decomposable and homo-

geneous, (4) for each point p of M, Up is a nondegenerate, (rel.) open

subset of M. It follows from (3) and the definition of Up that (5) p does

not cut any two points of Up from each other.

Since by (2) if p is a point of M, p cuts some two points from each

other, it follows from (5) that (6) p cuts some point o from every point

of Up. And from the homogeneity it is true that (7) for each point o

of M, there exists a point p of M such that p cuts o from every point

of Up. In this case every point of Up is a point of U„. Hence by the

lemma of [5], (8) UP=U0.

Suppose that U is an open subset of M and that 77 is a subset of

M—U such that in order for a point x of M to belong to 77 it is nec-

essary and sufficient that UX=U. It follows from (4), (7) and (8) that

3 A cut point of M is a point whose complement in M is not strongly (continuum-

wise) connected. As used here a cut point need not be a separating point.



i955l        ON A CERTAIN TYPE OF HOMOGENEOUS PLANE CONTINUUM 737

such sets U and H do exist and are nondegenerate. From (5) and (8)

it follows that (9) if w is a point of M which is cut (in M) from a point

of U by a point of H, then w is a point of H.

It is rather easy to see that H is closed. Suppose that there exists

a point y of H — H. Let 2 be a point of Uv. Then M is aposyndetic at

z with respect to y and hence M is aposyndetic at z with respect to

some point of H. Consequently z belongs to U. But by the lemma of

[5], Uy cannot be a proper subset of U and hence Uy=U and y

belongs to H. So (10) H is closed.

For each point o of H, let N0 denote o together with all points x

of H such that x cuts o from U. The set N0 is closed. Suppose that

for each point o of H, o does not cut all other points of N0 from U.

Now let Oi be such a point of H. Then iV0l contains a point o2 such

that Af02 is a subset of A7^ — oi\ N0l contains a point o% such that A7,,,

is a subset of N02 — o2; and so on for a countably infinite number of

times. Let o„ denote a point of IJA7^. Then N„a is a subset of each

N0f, and the process may be continued. Thus one obtains an uncount-

able well-ordered monotone decreasing sequence of distinct closed

subsets of a compact metric space. This being impossible, it follows

that for some point o of H, o cuts all other points of N0 from U. Be-

cause of the homogeneity this must be true for every point o of H.

So (11) if a point p of if cuts a point o of iJfrom U (i.e., p belongs to

N0), then o cuts p from U.

The set U is dense in M. (12) Let o be a point of H. It follows from

(3) and (11) that A7,, contains no (rel.) open subset of M. So by (10)

if Ut*M there exists an (rel.) open subset D of M lying in M—(U

+ N0). Since U„=U, M is not aposyndetic at any point of D with

respect to o. By Theorem 6 of [ll] D contains a point w such that o

cuts w from a point of Z7. By (9) w is a point of H. Hence o belongs

to Nw. So by (11) N0 contains w, which is a contradiction.

If p and o are points of M and p cuts o from U0, it follows from

(4) and (12) that p cuts o from a point of Up. By (5), p cuts o from

£/p and, by (8), Up= U0. So if H is the set of all points x such that

Ux = U0, then p is a point of iJ and hence (by the definition of Na)

p is a point of A7,,. So A7,, may be characterized without reference to

H as follows: N0 is o together with all points x of M such that x cuts

o from U0. Then if £ is a point of A„, £/„= U0 and, by (11), Np = N0.i

Hence if o is a point of M, N0 may also be characterized as follows:

No is o together with all points x of M such that o cuts x from U0.

Now suppose that for some point o of M, N0+ U07*M, i.e., there is a

1 The reader should observe that if x and y are points of M then either iV* = Nu

or Nx-Nu=0.
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point q of M such that M is not aposyndetic at q with respect to o

(or any other point of N„) but no point of N0 cuts q from U„. Because

of the homogeneity, every point q of M is so topologically related to

some point o of M. Since M is decomposable, M is the sum of two

proper subcontinua Mi and M2. Let V\ = M—M2, V2 = M—M\ and D

be an (rel.) open subset of M such that Vi contains D. For each

point q of D, there exists a point o of If such that M is not aposyndetic

at q with respect to o but <? does not belong to N0. Since g does not

cut o from Uq and Fj- £7,^0, g does not cut o from V2. So there exists

a continuum K0 in M—q irreducible from o to F2. Now for each point

q of D let d(g) be the largest number such that for some 0 and K0 (with

the prescribed properties), d(q)=d(K0, q) and let o(q) and 7C(g) be

some one definite such pair, 0 and K0. For each positive integer n, let

En denote the set of all points q of D such that d(q) ^ 1/w. First, ob-

serve that En is closed, and second, that 22* En = D. Hence for some

positive integer n', En> contains an open subset of M; so there exists

a circular region RT(p) (with radius r <l/n' and center p in En>) such

that every point of M-Rr(p) belongs to £„'. It is easy to see that if

s = l/n' — r, then for each point q of M■ Rr(p) ■ Rs(p) every point of

K0(q) is outside of Rr(p).

Let Mo denote the closure of XX°(?) {for all q in M-Rr(p)-R,(p)}.

Let z be a point of V2. By Theorem 6 of [ll] there exist a point x of

M-Rr(p) -Ra(p) and a point y of MB such that y cuts x from 2 in J17.

Either y cuts x from £/„ or y cuts 2 from £/„. Case I. Suppose that y

cuts 2 from £/„; then 2 belongs to ./V„. Since M0 is a subset of Mi,

y belongs to Mi. Furthermore Mi contains Vi which intersects Uy.

So Mi contains y and a point of Uy but does not contain 2. This is a

contradiction because 2 cuts y from Uy. Case II. Suppose that y cuts x

from [/„, then x belongs to Af„. Then M2-\-Mo is a cont'nuum con-

taining y-\-V2 but no point of Rr(p)-Rs(p). Since F2 intersects Uy,

M2-\-M0 contains y and a point of Z7H but not x. Hence x does not cut

y from Uy, which is a contradiction.

It follows from the preceding paragraph that for each point 0 of M,

N0=M— U0. Hence N0 consists of exactly those points at which M

is not aposyndetic with respect to 0. It follows from Theorem 3 of

[ll] that N0 is a continuum.

Let G denote the collection of all subsets g of M such that for some

point 0 of g, g is L0, i.e., 0 together with all points y of M such that

M is not aposyndetic at y with respect to 0. Because of the homo-

geneity of M and the preceding argument, each element g of G has

the following additional properties:

(a) for some point 0 of g, N0 — g;
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(b) for each point x of g, UX=U0= U(g);

(c) for each point x of g, Nx=g;

(d) if x, yCg, x cuts y from U(g);

(e) M-g=U(g); and

(f) if K is a subcontinuum of M such that K ■ g 9*0 9*K ■ U(g), then

K contains g.

So G is a collection of mutually exclusive, homogeneous, nondegen-

erate continua filling up M and each two elements of G are homeo-

morphic. Furthermore G is upper semi-continuous. For if this were

not the case G would contain a convergence sequence of elements

whose sequential limiting set would contain points a and b belonging

to different elements of G. Hence M is aposyndetic at a with respect

to b, i.e., there exist a subcontinuum K of M and an open subset V

of M such that M—bDK^)VZ)a. It follows that some g of G (not

containing a) contains a point x of V and a point y of M—K. This

is a contradiction of (f). Since G must be continuous at some one of

its elements, it follows from the homogeneity that G is continuous.

Theorem 2. Suppose that M is a homogeneous, decomposable,

bounded, plane continuum. Let G denote the collection of all subsets g

of M such that for some point x of M, g is Lx. Then G is a continuous

collection of mutually exclusive continua filling up M such that

(1) with respect to its elements (as points), G is a simple closed curve,

and

(2) each element of G is a homogeneous, bounded, plane continuum

which does not separate the plane.

Proof. Suppose that M is a subset of a plane 5. It is clear that for

each g of G, M—g is connected (in fact, by (5), M—g is strongly or

continuum-wise connected). Since each two elements of g are homeo-

morphic, it follows that if one element of G were to separate S, then

each of them would separate 51 and there would exist uncountably

many mutually exclusive domains (at least one for each g) in the

plane. This being impossible, no element of G separates 5. Let G'

denote the upper semi-continuous collection consisting of G together

with each degenerate subset of S—M. With respect to its elements

(as points), G' is a plane [13] and G is a compact subcontinuum of

G'. Furthermore, G is homogeneous and aposyndetic. Hence by [5],

G is a simple closed curve.

Remarks. Because each element of G in Theorem 2 is homogeneous

and does not separate the plane, each such element is indecomposable.

The question [5] still remains: Is every homogeneous, bounded, non-

degenerate, plane continuum which does not separate the plane a
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pseudo-arc?

L. F. McAuley [10] has shown that every compact metric con-

tinuum has an aposyndetic very nearly atomic decomposition. His

decomposition applied to the continuum M of the theorems yields the

same collection G as I have obtained, but I have found no easy way to

make use of it here.

Since every decomposable, homogeneous, bounded continuum in

the plane must have exactly two complementary domains (this fol-

lows from Theorem 2), every homogeneous, bounded continuum in

the plane having more than two complementary domains is indecom-

posable and of Type 3. C. E. Burgess has a somewhat stronger result

than this in [14].
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