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The University of Oregon

ON AN ITERATIVE PROCEDURE FOR OBTAINING THE
PERRON ROOT OF A POSITIVE MATRIX

RICHARD BELLMAN

1. Introduction. The purpose of this paper is to present a new

iterative procedure for obtaining the characteristic root of largest

absolute value of a positive matrix.

The origin of the method is as follows. There is a result of von

Neumann [7], a generalization of his fundamental min-max theorem

in the theory of games [8], to the effect that

(x, Ay)                           (x, Ay)
(1) Min Max- = Max Min-

v        x     (x, By) x        v     (x, By)

where the variation is over the region defined by

n

(a) %i ̂  0, 2~1 Xi = !>

W *= T
(b) yi ^ 0, E y,= 1,

>=i

and it is assumed that B has the property that

(x, By) ^ b > 0

for all (x, y) £i?.

It was observed by Shapley [6] that this result can be obtained as

a by-product of the theory of "games of survival," cf. [l; 5; 6], which

requires only the fundamental min-max theorem, by considering the

equation for X,

Received by the editors November 22, 1954.



720 RICHARD BELLMAN [October

X = Min Max [(x, Ay) + X(l - (x, By))]
V X

3
= Max Min [(x, Ay) + X(l - (x, By))],

x V

where we impose the additional assumption the 1 > (x, By) for all

(x, y)CR- This restriction is of no importance because of the homo-

geneity of the ratio in (1).

It is then easy to prove that there is a unique solution of (3) which

may be obtained as the limit of the sequence {Xn\ defined by

X0 = Min Max [(x, Ay)] = Max  Min [(x, Ay)],
y x xy

(4) Xn+i = Min  Max [(*, Ay) + X„(l - (x, By))]
V X

= Max Min [(*, Ay) + X„(l - (x, By))],
X V

and that this solution is then given also by the common value of the

ratio in (1).

This procedure yields a theoretical and computational hold on X,

which is quite useful. Furthermore, by means of this ingenious device

we have a means of linearizing a number of problems relating to

ratios. In this paper we shall apply this idea to the problem of deter-

mining the root of a positive matrix of largest absolute value, using a

variational representation for this root involving a ratio.

2. The Perron root. Let A be a square matrix (a,j). It is called

positive1 if a;;>0 for all i and/. The basic result concerning positive

matrices is due to Perron and is the following:

Lemma 1. If A is a positive matrix, there is a unique characteristic

root of largest absolute value. This root is positive and its associated char-

acteristic vector may be taken to be positive.

Notation. We denote this root by p(A), the Perron root of A.

An alternative definition of this root, possessing the great merit of

involving a variation, is

Lemma 2.
n

p(A) = Max Min  E **y*y/*<
X i ,'=1

= Min Max E aaXj/xt.
X i 3=1

1 Not to be confused with positive definite.
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This result has been used by several authors independently, and

does not seem to have any particular known origin. It was communi-

cated to the author several years ago by H. Bohnenblust in connec-

tion with a different problem, see [2].

Here the variation is over the region defined by

(2) Xi ̂  0, 22 Xi = 1.
i

3. A refinement of Lemma 2. Let us show that Lemma 2 may be

replaced by the stronger result

Lemma 3. We have

n

p(A) = Max Min  22 &axi/xi
R' i      i-l

(1)
n

= Min Max 22 anxi/xi,
R' i       j=i

where R' is defined by

(2) Xi^d, 22 Xi = 1,
i

and d is some parameter depending only upon A. Specifically, we may

take

(3) d = Min an / Max ( 22 aa)-
t,i        I       t     \ i=i     /

Proof. The minimizing x* constitute the characteristic vector asso-

ciated with p(A), normalized by the condition that 22i Xi — 1- Hence

n

(4) p(A)xi = 22 inXj, i = 1, 2, • • • , n.
j-i

Thus

(5) p(A) Min Xi ̂  ( Min a,-,-J 22 xi = Min al7.
« \ t.i / y=i U

On the other hand,

(6) p(A) Max Xi g. Max *,•( Max  22 aa)>

whence
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(7) p(A) =S Max ( E aX

Combining (5) and (7) we have

(8) Min Xi ̂  Min a{j / Max ( E <*«)■
« t.J I « \  3 = 1 /

4. An alternative definition of p(A). Let us now show, following the

lead of Shapley, that we may define p(A) as follows

Lemma 4. p(A) is the unique solution of

(1) X = Max Min     E aaxi + M* ~ *.)
R' i      L j=l J

or of

(2) X = Min Max     E aaxi + X(l — x.)
fi' i        L  /-I J

where R' is as defined by (3.2).

Proof. It is sufficient to prove that p(A) satisfies (1). The proof

of the other statement is similar. We have, for all x in R',

(3) X ̂  Min     E anXj + X(l - *,-)   ,

for any solution X, with equality for at least one x. We shall prove

below that there is exactly one solution which may be obtained

iteratively.

Hence, for all xCR',

(4) 0 ^ Min     E anXj — Xx{  ,

or

(5) 0 ^ Min \xi< E anXj/xi - X> \,

for all xCR'- Since x,->0, it follows that

(6) X ̂  Min ( E aijXj/xi)
i       \ j=l /

for all x, with equality for one x, at least. Hence
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(7) X = Max Min ( 22 anxi/xi] = P(A),

which shows uniqueness provided we assume existence.

Similarly we may demonstrate the result in (2).

5. A nonlinear recurrence relation. Let us now consider the non-

linear recurrence relation

(1) Mn+i = Min Max     22 aaxj + un(l — xi)   ,
R'        t     L i=i J

where R' is as above and uQ is arbitrary. We shall prove

Theorem.

(2) p(A) = lim «„.
n—*»

A similar result holds for the recurrence relation based upon (4.2).

Proof. We have

«„+i = Min Max     22 anxi + «»(1 — xi)

(3) r   ' u;    n J

=   Min Max    22 Vi    22 aHxi + «n(l — xi)
R'        v    L ,=i      L y-i JJ

where the maximum in y is over the region y,=iO, 22"-i y» = L Using

the min-max theorem of von Neumann, this may also be written

(4) un+i = Max Min < 22 V»    22 ^aXj + un(l - xi) \\ .
v      r'    \i=i    L i=i J;

Let us write this recurrence relation in the form

(5) un+i = Min Max T(u„, x, y) = Max Min T(un, x, y).
R' v v R'

Then using a device we have employed frequently in the theory of

dynamic programming, cf. [2; 3], we have

... «B+i = T(un, x, y),
(°)

un = T(un-i, x*, y*),

where (x, y) and (x*, y*) are respectively values where the min-max

and max-min are assumed for n and n — 1 respectively.

Hence, by virtue of (5),
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«n+i = T(un, x, y) ^ T(un, x, y*)

= T(un, x*, y),

and

un = T(un-i, x*, y*) ^ T(un-i, x*, y)
(o)

^ T(un-i, x, y*).

From this we obtain

un+i — un ^ T(un, x, y*) — T(un-i, x, y*)

^ T(u„, x*, y) — T(un-i, x*, y),

which yields

n

u„+i — un ^ (ua — un-i) E y?(i — *<)

(10)
n.

^ («» — «„_i) E ?;(! — **)•
•=i

Hence

| «n+l — Un I

(ii) r " " 1
s; | m„ — m„_i I Max   E :y*(i - *.)i E y<(i — *.*) •

L <=i t=i J

Since Xi, x* = ^>0, and y1=^0,  E»y»' = l> we have

(12) | W„+l  —  «n |     ̂    (1   -   d) I  M„  -   Un-1 |  ,

and hence geometric convergence of Ew-o (un+i — un). The limit of

w„ exists, and must equal p(A). Observe that this is a situation where

only the value of a game is of interest, if we wish only to determine

p(A). Consequently, the iterative procedure of [4] may be of some

merit here.

6. Monotone convergence. If we set

(1) u0 = Min Max E aaxi<
B' i j

we see that Ui'lzut, and hence m»+i =?«»>, which ensures monotone con-

vergence.

Similarly, if we have

(2) ai ^ an ^ a2,

and use the Perron roots of the associated matrices as initial ap-
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proximations, we obtain monotone increasing and monotone decreas-

ing sequences respectively.
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