
ON ARITHMETICAL CLASSES NOT CLOSED
UNDER DIRECT UNION1

KURT BING

1. Introduction. Horn [2, Theorems 4 and 10; cf. 3] has shown

that every class of algebras characterizable by a closed sentence of

conditional type is closed under passage to direct union and that this

result cannot be improved by allowing a larger class of characterizing

sentences describable in terms of the quantifiers and prepositional

structure of their prenex normal forms. It is not known whether

every class of algebras which is characterizable by a closed sentence,

but not by a closed sentence of conditional type, fails to be closed

under direct union.

These results and problems carry over into Tarski's theory of

arithmetical classes of algebras [4],2 which provides mathematical

counterparts for characterizing sentences containing relation sym-

bols, rather than for the more special sentences containing operation

symbols used by Horn [2]. In particular, it is known that all condi-

tional classes of algebras, as defined below, are closed under direct

union,2 and the problem whether all other (nonconditional) arith-

metical classes of algebras fail to be closed under direct union is still

unsolved. However, we shall give two sufficient conditions for non-

closure under direct union of nonconditional classes (§2, Theorems

1 and 2), as well as a sufficient condition for closure, of which we do

not know that it applies to conditional classes only (§3, Theorem 3).

These results will be further discussed in §3.

We use the terminology and notation of [4], with the provision

that + shall be considered as a ternary relation (not as a binary

operation), and the necessary changes be made in subsequent defini-

tions. This restriction to one finitary relation is not essential for the

ideas used. For purposes of abbreviation, we use the symbols a

(and), —*■ (if • • • then ■ • ■ )> V (there exists), A (for all), and such

symbols as \/iEI (there exists an element i of 7) and /\iEI (for all

elements * of 7).

Presented to the Society, October 30, 1954; received by the editors November 10,

1954.
1 The problem considered in this paper was suggested to the author by Professor

Alfred Tarski in his seminar of Spring 1953 at the University of California. Professor

Tarski also suggested Corollary 1 of this paper and the use of a method due to

McKinsey [l, Theorem 1 ] for its proof. This method appears in the proofs of Lemmas

2 and 3 below.
2 See  §3 of this paper.
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arithmetical classes under direct union 837

Definition 1. The set of universal functions (denoted by UF) is

the intersection of all sets of arithmetical functions which include

the set EF of elementary functions and are closed under the opera-

tions U and } If Fis an arithmetical function, the set of successors

of F is the intersection of all sets of arithmetical functions which

include {F} and are closed under the operations V* and A* for

k = 0, 1, ■ ■ ■ .
Definition 2. The set of universal conditional functions (denoted

by UCONDF) has as elements all finite intersections of unions of

finitely many complements of elementary functions and at most one

elementary function. The set of conditional functions (denoted by

CONDF) has as elements all successors of universal conditional

functions. The set of disjunctive functions (denoted by DISJF) has

as elements all successors of those universal functions which are

finite unions of elementary functions and complements of elementary

functions. The set of positive functions (denoted by POSF) has as

elements all successors of those universal functions which are finite

intersections of finite unions of elementary functions.4

Definition 3. A set of algebras S is called: a universal class3 if

S =C£(F) for some function FE UF; a conditional class if S =C-C(F)

for some FECONDF; a disjunctive class if S =C»C(F) for some

FEDISJF; a positive class if S = (3£(27) for some FEPOSF. The
family of all universal classes is denoted by I7C,3 that of all condi-

tional classes by CONDC, that of all disjunctive classes by DISJC,

and that of all positive classes by POSC.

Definition 4. If, for each i in an index set 7, Sl, = (y4<) +) is an

algebra, the direct union of the algebras SI,-, denoted by U8L[«£7], is

the algebra 9t = (^4, +) of all functions u on 7 such that u(i)EAi for

all iEI, and such that +(u, v, w) holds in 21 if and only if, for each

i, +(u(i), v(i), w(i)) holds in SI,-. (If the SI,- are merely sets and not

algebras, USt,-[*£7] is merely the set of functions defined above.) If

3I = (.4, +)=U3ti[iG7], x is an element of A" (i.e., a.sequence of ele-

ments of .4), and iE7, we denote the sequence {xo(i), Xi(i), • ■ • } by

(x(i))-(x is determined if (x(i)) is given for each i.)

Remark. We therefore have for every direct union SI = (4, +)

= USl,-[*£7]: If F is an elementary function, then E(3I) = {x|x

EAa*(f\iET){(x(i))EF(%.i)})- Dually, if F is the complement of
an   elementary   function,   then    E(SI) = [x\xEAa*(\/iEI) {(x(i))

em)}}.
Definition 5. Let F, GEAF. Let F=H0, Hi, • • • , 77» = G be a

» Cf. [5].
4Cf. [4, Theorem 11].
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sequence of arithmetical functions for which there exists a set S of

functions/ from AF to AF, together with a sequence of natural num-

bers k(l), ■ ■ • , k(n), such that for each positive integer p with

p^n, there occurs at least one of the following cases:

Casel. (Hp=Vk(p)Hp-i)A(AfES){f[Hp] = Vk(p)f[Hp_i]}.
Case 2. (77, = A*(p,77p_i) *(AfES) {/[77p] = A*(p)/[77P_,]}.

Then the sequence 770, 77i, • ■ • , 77„ is called a step sequence from F

to G, and the set 5 of functions is called concurrent with the step se-

quence. (For example, if / is the identity function from AF to AF,

the set containing / as the sole member is concurrent with all step

sequences.)

2. Sufficient conditions for nonclosure under direct union.

Lemma 1. Let F, GEAF, and let G be a successor of F. Let 770,

77i, • • • , 77„ be a step sequence from F to G, and let I be a set of indices

for functions fi such that the set S= {/,-| iEl} is concurrent with the step

sequence. Let F have the following property P: For all direct unions

§1 = (A, +) of algebras 2L indexed by I, and for all xEA",

(1) (Ai E I) {(x(i)) E fi[F]m }-+xE F(3L).

Then each member of the step sequence (hence also G) has the property P.

Remark. In all applications of this lemma, 7 will be finite.

Proof. If §1 = (^4, +) is an algebra, xEA", and yEA" differs from

x at most in its &th term, we call y a fc-sequence for x. (For example,

if 2f=U2I,[i(E7] and xEA", then yEA" is a ^-sequence for x if and

only if, for each i in 7, (y(i)) is a ^-sequence for (x(i)).) Suppose that

the hypothesis holds; then H0 = F has the property P. Suppose that

77j,_i, p — 1 <w, has the property P. To prove that 77p has the prop-

erty P, suppose that for 21 and x as described,

(2) (AiEI){(x(i))Efi[Hp](ni)}.

It remains to show that

(3) x E Hp(%),

and we distinguish the two cases of Definition 5.

Case 1. 77p = Vi(P)77p_i, and /,[77p] = V*cP)/i[77p_i] for all fiES.
We must show that x(£ V,t(P)77p_i(2F), i.e. that no &(J>)-sequence for

x belongs to 77p^i(2l). Indeed, let yEA" be a k(p)-sequence for x.

Then, for all i, (y(i)) is a &(£)-sequence for x(i). But by (2)

(Ai E I){(x(i)) £v*(P>/,-[/7P-i](2L)}.

Therefore, for all i: No &(£)-sequence for (x(i)) belongs to/<[77p_i]
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(SI,), and (y(i))Efi[Hp-i](%i)- Hence, by the inductive hypothesis,

y(3E27p_i(2l), as was to be shown.

Case 2. 77p= AHp)Hp-i, and/,[77p]= Ak(p)fi[Hp^i] for all/<£S.
To prove (3) we must show that xE Ak(,P)Hp-i(%), i.e. we must find a

k(p)-sequence for x which does not belong to 77j,_i(3l). But by (2),

(Ai E I){(x(i)) E Ak(p)fi[Hp^]m},

i.e., for each i there exists a &(p)-sequence for (x(i)), y,-, such that

(4) y,-£/,[77p_1](SI,).

Choose such a y< for each i and define a &(p)-sequence z for x as fol-

lows: zEAa*(AiEI) {(z(i))=yi}- By (4) and the inductive hypoth-

esis, z(J27j,_i(Sl), as was to be shown.

Lemma la. Lemma 1 remains true if (1) is replaced by

(la) (Ai E I) {(x(i)) E f<[F]Wi) }^xE F(SI).

Lemma lb. Lemma 1 remains true if the reference to the functions

fi and to S is deleted and (1) is replaced by

(lb) (At E I){(x(i)) EF(3L)hiGF(SI).

Proofs. If S= {fi\iEl} is concurrent with the step sequence

F = H0, Hi, • • • , Hn = G, then any set S'= {gi\iEl) in which the gi

are functions from AF to AF such that gi[Hp] =fi[Hp] for all iEI

and O^ptin, is seen to be concurrent with the step sequence

F=H0, Hi, • ■ • , Hn = G. Application of Lemma 1 to that step se-

quence and S' gives Lemma la.

In particular, in view of the last sentence of Definition 5, each/,-

in Lemma la may be taken to be the identity function from AF to

AF; then the result is Lemma lb.6

Lemma 2. Let FEUF, GEAF, and let G be a successor of F. Let

(5) F = n      U    Fhi,
h<l   i<m(h)

where h and i run over natural numbers, I is a positive integer, m is a

function from I to the positive integers, and for each Fhi, either FniEEF

or FhtEEF. For each h<l, let m(h) =P(h)KJQ(h), where

P(h) = {i\ i<m(h)AFhiEEF],Q(h) = {i\i <m(h) AFhiEEF).

Let Ho, Hi, • • ■ , Hn be a step sequence from F to G. Let S= {fhi\ h<l,

6 This special case corresponds to a lemma due to Horn [2, Lemma 4], whose

method of proof was used for Lemma 1.
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i<m(h)} be a set of functions concurrent with the step sequence such that

(6) /h[P]- U       Fhr
rEi>U)U(>]

for all h<l and i<m(h). Let h be a natural number less than I. Then

each member Hp of the step sequence (hence also G) has the following

property: For all direct unions 21 = (.<4, +) of algebras 21,- indexed by

m(h), and for all xEA"

(Ai < m(h)){(x(i)) Efhi[Hp](%)\ -> x E HP(K).

Proof. In view of Lemma 1, it is sufficient to prove the assertion

for £=0, i.e. for 770 = F. Therefore, suppose that F, G, S, h, 21, and x

are as in the hypothesis, and that

(Ai < »(*)) /<*(*)> £      U       7V2L)} .
\ r G p(*)UK> ;

It is sufficient to show that

x£F(2Q.

Indeed, by hypothesis, we have (x(i))£E.7),r(2L) for all i<m(h), and

all rEP(h). Hence, by the remark following Definition 4,

(7) (ArEP(h)){xEFhrW)}.

Also, by hypothesis, (x(i))EFhi(^.i) for all iEQ(h); hence, by the
same remark, (AiEQ(h)) {x££ 7)^(20 }■ From this and (7) we con-

clude that xE(ii<mwFhi(^.); hence by (5), that xEF(W).
Remark. We can satisfy the hypothesis of Lemma 2 (and the cor-

responding part of the hypothesis of Theorem 1 below) for every

GEAF. For every such G is a successor of some FE UF representable

in the form (5) ;4 we can then always construct a step sequence from

F to G and (by obvious inductive definitions) a set of functions S

whose members satisfy (6) and which is concurrent with the step

sequence. A similar observation holds for Lemma 3.

Theorem 1. Let GEAF, GECONDF, and let G be a successor of

FEUF, represented in the form (5) of Lemma 2. Let H0, Hi, • • • , 77n

be a step sequence from F to G, and let the P(h), the Q(h), and the set S

be as in Lemma 2. Then, if

(8) (Vh < l)(Ai < m(h)){QjQfG) £ C-C(/a.-[G])},

QJ^fG) is not closed under direct union.

Remark. The proof will show that the hypothesis GECONDF is
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unnecessary. In fact, by Theorem 1 and the closure property of con-

ditional classes mentioned in the introduction, or directly by the

proof method used for Corollary 2 below, GECONDF is implied by

the remaining hypotheses.

Proof. Suppose that the hypothesis holds, and let h <l be such that

(Ai<m(h)){e£(G)&ejfZ(fhi[G])}.Foreachi<m(h),let%i = (Ai,+)
be an algebra such that Sl,GC=C(C7), SL£(?£(/,,,■ [G]), and let XiGAT
be such that

(9) XiEfki[G]m.

Let 3I = (^, +)=VL%i[i<m(h)], and define yEA" by:

(Ai<m(h)){(y(i)) = Xi].

Then, by Lemma 2 and (9), yEG(W). Hence %EG£(G), while for

each i, »,-ee-C(G)-

Corollary 1. 7/S QCONDC and S EUC, S is not closed under
direct union.

Proof. By Definition 3, there exists FEUFsuch thatS =C-C(F);

we have FE CONDF. Let F be represented in the form (5) of Lemma

2. Consider the step sequence F = H0 = G, and let the P(h), the Q(h),

and the set S be as in Lemma 2. It is sufficient to show that (8) holds

with F substituted for G. Indeed, if this were not true then

(Ah < l)(Vi < m(h)){Qj(i(F) C G^(M[F])}.

For each h <l, choose an i(k) <m(h) such that 6£(F) C ££(/,, ,iW [F]).

Then G£(F)Qe£(r\k<i /».«« [F]), (]k<i C£(Gh) being equal to
C-C(fU<i Gh) whenever the Gh, h<l are arithmetical functions. But

fl/*.>« L>]=n U FhrQF,
h<l h<l  rGP(*)U(»(*)l

and therefore C-CCn*<i Mm [F])C(%(E) also, whence S =£0^
= G*C(r\h<ifh.i(k) [F]). The last-named function is a conditional func-

tion, and so S GCOTVDC, contradicting the hypothesis. Hence (8)

must hold as asserted.

Corollary 2. 7/S £ CONDC and S EDISJC, then S is not closed
under direct union.

Proof. There exists GEDISJF such that S =Q-C(G); we have

GE: CONDF. There exists an F belonging to UF and to DISJF such

that G is a successor of F. F may be represented in the form (5), as a

union with 1 = 1. Let 770, 77i, • • • , 77n be a step sequence from F to G,
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and let the P(h), the Q(h), and the set 5 be as in Lemma 2. It is

sufficient to show that (8) holds. To prove this, we show first that

for every non-negative p^n

(10) (A;<w(0)){/0i[77p]c:/7p}.

Indeed, for p=0 we have by (6): (Ai<m(0)){foi[F]cZF}. If (10) is
true with p — Kn substituted for p, then, for all i<m(0) and for

fc = 0, 1, • • ■ ,both V,t/o,[77p_i]c: Vt77p_iand Akfoi[HP-i]c: AkHp_i;
and then (10) holds both in Case 1 and in Case 2 of Definition 5.

Now, if (8) did not hold, we should have

(Vi < m(0)){G£(G) C e-C(/oi[G])}.

But by (10), with p=n, 77„ = G, (Ai<m(0)) {e£(foi[G])QC£(G)},
and hence, for some i<m(Q), S =C£(G) = G£(j"o,-[G]). Since foi[G]

ECONDF, we find SGCOiVDC, contradicting the hypothesis.

Hence (8) must hold.

Lemma 3. Let GEPOSF. Let G be a successor of the function F be-

longing to UF and to POSF and represented in the form (5) of Lemma 2,

Ho, Hi, ■ ■ ■ , 77n be a step sequence from F to G, and let the P(h) and

Q(h) be as in Lemma 2; we may assume all the P(h) to be empty. Let

J = VLQ(h)[h<l], and let S= {fj\jEJ} be a set of functions concurrent

with the step sequence such that

(ii) fAP] = n f»./<m
h<l

for all jEJ- Then each member Hp of the step sequence (hence also G)

has the following property: For all direct unions 21 = (A, +) of algebras

2Iy indexed by J, and for all xEA"

(Ai E 7) {(x(j)) E fi[H-](%,) )^xE Hp(m.

Proof. In view of Lemma 1, it is sufficient to prove the assertion

for £ = 0, i.e. for H0 = F. Suppose that F, G, S, 21, and x are as in the

hypothesis, and that

(Aj E I) \(x(j)) E nFh.iW(%,)\.
V h<l J

It is sufficient to show that x€f.F(2l). Indeed, by hypothesis, (AjEJ)

(\fh<l){(x(j))EFh,m(%)}- Since FKmEEF, we conclude that

(AiEJ)(\/h<l){xEFn,jm(m}, and

(12) (A/ EJ)\xEV\ Fh,jW(%)\ •
V h<l )
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Now, if we had xGF(Sl), then, by (5) and the emptiness of the

P(h), (Ah<l)(ViEQ(h)){xEFhi(%)}. We form an element j of /

by taking, for each h<l, j(h)EQ(h) to be such that xEFh.jmC®.).

Then xGfW Fh,jW(Wj, contradicting (12). Hence x£F(Sf).

Theorem 2. 7/S ECONDC, S EPOSC, then S is not closed under

direct union.

Proof. There exist G and F as in Lemma 3 such that S = C£(G);

we have GECONDF. Let 770, 77i, • • • , 77n be a step sequence from

F to G, and let the P(h) and Q(h), J and 5 be as in Lemma 3. In

view of Lemma 3, it will be sufficient to find, for each jEJ, an alge-

bra % = (Aj, +) such that 2I.GS, 21; G &£(/[£])• For then we may

choose, for each j, XjEA"such that Xj£/y[G](2l/), and, if 2l = (.4, +)

= U3Ij[jG7], we define yG^4" by letting (y(j))=Xy for each jEJ-

Then, by Lemma 3, y£G(Sl), and %EC£(G) =S, while SlyGS for
each_7-G7, which will prove the theorem.

It remains to show that for each jE J, such an 3l> exists. Indeed, if

not, we have

(13) (VjEJ){S ce^[S])|,

On the other hand, by (11), (AjEJ) {fj[F]QF}, and this implies, as

in the proof of Corollary 2, (AjEJ) {fj[G]QG\. Therefore (AjEJ)

{e-C(f;[G])ce.C(G)=S}, which, with (13), implies (VjEJ)
{S =(%(/,[£])}• But, in view of (11), fj[G]ECONDF, and so

S ECONDC, contradicting the hypothesis. It follows that for each

jEJ, an 21,- as described exists.

3. A sufficient condition for closure under direct union. As was

mentioned in the introduction, all conditional classes of algebras

are known to be closed under direct union. (The proof of this fact is

like Horn's corresponding proof [2, Theorems 3 and 4]: One shows

that (lb) holds if FEUCONDF, and the assertion follows by use of

Lemma lb). Another result due to Horn [2, Theorem 10], which

carries over into the theory of arithmetical classes, implies that every

subfamily of AC, disjoint with CONDC, which can be described in

terms of the structure of the canonical representations4 of the arith-

metical functions characterizing the family members, has at least one

member class which is not closed under direct union. We conclude

from the corollaries and from Theorem 2 of the preceding section

that in some subfamilies of this kind (namely, the subfamilies of

UC, DISJC, and POSC consisting of the respective members not in

CONDC) all members fail to be closed under direct union. But

Theorem 3 of this section makes it seem unlikely that the same
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should be true for the entire subfamily of AC consisting of the mem-

bers not in CONDC; for this theorem gives a sufficient condition

for closure of which there seems no reason to assume that it applies

to conditional classes only. There remains the problem of finding a

condition both sufficient and necessary for closure, which would clar-

ify the status of those nonconditional arithmetical classes satisfying

none of the conditions mentioned in Theorems 1,2, and 3.

Theorem 3. Let GEAF, and let G be a successor of FEUF, repre-

sented in the form (5). Let H0, Hi, ■ ■ ■ , H„ be a step sequence from F

to G, and let the P(h) and Q(h) be as in Lemma 2. Let there exist a set

S={ch0, cpi} of functions concurrent with the step sequence, a decom-

position of I into disjoint sets 7(0), 7(1), 7(2), one set R(h) for each

h<l, and one number r(h)EQ(h) for each hEL(2) such that

7(0) VJ 7(1) C {h | h < I A P(h) ^ AJ,

7(2) C [h\ h <l AQ(h) 5* A};

(15) R(h)=(P(k)     "GL(°)UI(1)'
\{r(h)}   if hEL(2);

MP] D U        Fhr,
.   . »6i(o)Ui(2)   tGrw

4>i[F] = (1 U     FhT;
*6l(l)Uj,(!)     rG-R(A)

d7) e^)ce^o[G])ne^i[G]).

Then Q£(G) is closed under direct union.

Remark. <f>0[Hp] and 4>i [Hp] belong to CONDF for each 77p of the

sequence. If 7(0) is empty, then I(1)UL(2) =Z. One then sees as in

the proof of Corollary 2 that Qj(1(<I>i[G])CZC£(G), and by (17)
QJl(G)=Qj(l(<pi[G])ECONDC, so that the assertion follows from
the known closure property of conditional classes. The same is true

if 7(1) is empty. The proof is not affected if 7(2) is empty.

Proof. Suppose the hypothesis holds. By the preceding remark, we

may assume that,neither 7(0) nor L(l) is empty.

Let 7 be an index set which has at least two elements. Let i0 be a

fixed element of 7. We define a set S' = {fi\iEl} of functions con-

current with the given step sequence as follows:

(<po for i = t0,

(18) fi =  ll   *      • ̂  •(<bi for t j* t0.

We shall prove that G has the following property P': For all direct
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unions 21 = (A, +) of algebras 3L indexed by 7, and for all xEA",

(19) (Ai E I){(x(i)) Efi[G]m} -* x GG(2I).

Indeed, by Lemma la it is sufficient to prove that F has the prop-

erty P'. To show this, suppose that for 31 and x as described, the

antecedent of (19) holds with F substituted for G. Then by (18),

(16), and (15)

(x(h))e\   n      u   F„r(SL0)l^r   n   F*.r(«(«.-.)1,
L h in L(0)   r in P>h) J L A in L(i) J

and

(AiEI- {io}) \{x(i)) e\     D U     Fhr(%i)]
\ L h in i(l)   r inP(ft) J

L h in i(2) -12

Therefore,

(A* G L(0))(Vr E P(h)) {(x(i0)) E FAr(2Iio)},

(A*G7- {io})(AhEL(l))(VrEP(h)){(x(i))EFkT(^i)],

and

(Ai G J)(A* G 7(2)){(x(i)) EFh,rW(Ki)}.

The Fhr in the first two statements are complements of elementary

functions, and the Fh,rm in the third statement are elementary func-

tions. Hence, by the remark following Definition 4,

(A* G 7(0) U 7(1))(Vr G P(*)) {* G F»r(SI)},

and

(AhEL(2)){xEFh,rW(K)}-

Therefore xGn*<«U,<m(A>FAl.(2f) = F(Sl), and F, hence also G, has the
property P' as asserted.

To prove the theorem, let 21 = (A, +) be a direct union of algebras

%i = (Ai, +) indexed by a set 7, such that 31,G^(G) for all t'G7.
We have to show that 21 GC^(G), i.e., that for all xEA"

(20) xGG(2I).

We may assume that 7 has at least two elements. We define the set

S'={fi\iEl} as in the first part of the proof. Then, by (17), QJ^fG)
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£e-C(MG]) for all iEL Hence for all iEI, &G&CCMG]). Let
xG^4", then for all iEI, (x(i))EA?, and therefore (A*£7) {(*(»)>

£/i[G](2I,)}. Since C7 has the property P' corresponding to 7 and S',

(20) now follows from (19). This proves Theorem 3.

Remark. If we change the hypothesis of Theorem 3 by replacing

the positive integer 2 by the positive integer s, 2^s^l (i.e., replacing

the union of 7(0) and 7(1) by the union of 5 disjoint nonempty sets

7,(0), 7(1), • • • , 7(^ — 1), replacing 7,(2) by the possibly empty set

L(s), introducing 5 concurrent functions <p0, </>i, • • • , <f>s~i such that

<!>t[F] = [)h£nt)uL<.,)\Jr£inh)Fnr for each t<s, and replacing (17) by:

C-£(G)Q0t<iC£("t>t[G]))i we can prove by the same method that

QJ^fG) is closed under passage to direct unions of at least 5 algebras.
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