
A NOTE ON DIFFERENCE SETS

D. R. HUGHES

1. Introduction. In [l] R. H. Bruck develops a theory of difference

sets in groups that are not necessarily cyclic. In this note we shall

present examples of such difference sets (where X = l) in not-abelian

groups of countably infinite order; to do this we generalize a method

used by M. Hall in [2]. (For terminology see [l].) The author wishes

to thank R. H. Bruck and R. P. Goblirsch for helpful comments.

2. Construction of difference sets. Suppose G is a group, D a subset

of G, and for every g£G, gr^l, there exists exactly one pair di, d2E.D

such that g=didr1, and there exists exactly one pair d3, d^D such

that g = dfldi. Then D is a 1-difference set, or merely a difference set,

for the group G.

Lemma. Let G be a group and let S be a subset of G; then S satisfies

(i) if and only if it satisfies (ii).

(i) sisr1 = s^r1 7*1,       Si £ S,    implies   si = s3, s2 = s^

(ii) sr1s2 = s^Si t* 1,       Si G S,    implies   si = s3, s2 = Si.

Proof. Suppose 5 satisfies (i), and 5r152 = 5r1^4 5^1, where the Si

are in S. Then s%sr1 = SiSr1- ir si = s3, then s2 = sit and we have (ii); if

si^s3, then s^r1^!, so by (i) we have s3 = Si, si = s2, which contradicts

srls29^1. The other half of the proof is completely similar.

Now let B be a countably infinite group satisfying:

(a) any equation x2 = b has at most finitely many solutions xG-B

for a given &G-B;

(b) B contains no elements of order two;

(c) every element not in the center of B has infinitely many dis-

tinct conjugates.

Suppose D' is a finite subset of B such that all the quantities

didf1, for d\, d2£zD', di?*d2, are distinct (whence all the quantities

drldt, for di, d2£.D', di^dk, are distinct). Then we shall call D' a

partial difference set. Given a partial difference set D' (possibly

empty) and given an element b(E.B such that b^didr1 for any

di, d2^D', we shall extend D' to a partial difference set D" in which

b=didrl holds for some pair d\, d2(E.D". Then given an element cG-B

such that C9*dr1d2 for any du d2^D", we shall extend D" to a partial

difference set D'" in which c = drxd2 holds for some pair d\, d2E.L>'".

Received by the editors December 9, 1954.

689



690 D. R. HUGHES [October

If we show that this can be done, then we can clearly construct a

difference set D for the group B, since B is countable.

Given &££ as in the above paragraph, note that b-^1. Letting x

be an arbitrary element of B, consider the elements:

(1)    xdr1, dixr1, bxdr1, rfiar^-1, b, fr-1, didr1, where di, d2 £ D', di ^ d2.

We note that b^b~x, and b^didf1; thus the elements of (1) are dis-

tinct from one another and from the identity, unless at least one of

the following holds:

(1.1)    xdTxx = d2, (1.2)   xdrlbx = d2;

(1.3) xdrlbx = J-1 J,; (1.4) x = did2ldz;

(1.5) x = b-'did^ds-    (1.6) x = bdu

(1.7) x=b~1di; (1.8) x = di;

(1.9) x = b~2du (1.10)   x~lbx = dTld2;

where di £ D'.

Equations (1.4)—(1.9) are satisfied for only finitely many x. Equa-

tions (1.1)—(1.3) are all of the form xax = c, or (ax)2 = ac; by hypothe-

sis on B, only finitely many x satisfy (1.1)—(1.3).

Now consider (1.10). If b is in the center of B, this becomes

b = dr1d2, or d\b = bdi = d2, or b=d2drl; so (1.10) is not satisfied at all

if b is in the center. If b is not in the center, then b has infinitely many

distinct conjugates, so (1.10) is false for infinitely many values of x.

Thus we can choose x (in infinitely many ways) so that all the ele-

ments of (1) are distinct, and none is the identity. If, for such an x,

we let D" be the set union of D' and x and bx, then (1) is the set of all

differences did2l, for d\, d2CD", di9^d2. Hence D" is a partial differ-

ence set, and b = didrl holds for a pair di, d2CD"■

Now if C7±drld2 for any di, d2CD", we can use a similar process to

construct a partial difference set D'" in which c = dr1d2 holds for

some pair di, d\C-D'".

Thus we can construct a difference set D for the group B.

Condition (b) is necessary in any group B which contains a differ-

ence set D. For if b2=l, bj^l, then b=didf1 for a unique pair

di, d2C.D; thus b = b~1 = d2dr1, so d\ = d2 and b=l, a contradiction.

3. Not-abelian free groups. We now show that the not-abelian

free group G with n generators (n ^ 2) satisfies the conditions (a), (b),

(c) of the preceding section.

Suppose x = g, where g is a generator or the inverse of a generator,

and x2 = c?*l. If y = hiht • ■ • hm is a reduced form for y, and y2 = c,
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then if m>l, there must be a reduction in fah2 ■ ■ ■ hmfah2 ■ ■ ■ hm; in

particular, hmfa = l. The reduction must lead to y2 = h\hm = gg, so

hi=hm = g, which contradicts hmfa = 1. So m = 1, whence clearly y = x.

Now suppose x=gig2 is a reduced form for x, where each g< is a

generator or the inverse of a generator, and x2 = ct6 1. Then c = g\g2gig%

and if this is not a reduced form for c, then g2gi = 1 and x = 1, a con-

tradiction.

If y = fah2 • ■ • hm is a reduced form for y, and if y2 = e, then

hifa ■ ■ ■ hjiifa ■ ■ ■ hm = gigigigf, this must reduce to hihthm-ihm
= gig2gig2, whence fei = /tm-i = gi and h2 = hm = g2. If m = 2 then it is

clear that y = x. If m>2, then there was a reduction in the first ex-

pression for y2, and in particular, hmhi = l; thus g2gi = l and * = 1, a

contradiction.

Inductively, assume that if the equation z2 = c, for any cGG, cj^l,

has a solution x of length <k, then the solution is unique. Suppose

x=gig2 ■ • • gk is a reduced form for x, and xi = C9il. Suppose

y = hifa • ■ ■ hm, where m = k, is a reduced form for y, and y* = c. Then:

(2) fah2 ■ ■ ■ hmhyh2 ■ ■ • hm = gig2 ■ • • gkgigi • • ■ gk-

In all cases, this implies fa = gi, hm = gk.

If the right side of (2) is a reduced form for c, and if m = k, then

clearly y=x. If m>k then there must be a reduction on the left side

of (2), and in particular, hmhi = l. But this implies g*gi = l, contra-

dicting the assumption that the right side of (2) is a reduced form for

c. So in this case, y=x.

If the right side of (2) is not a reduced form for c, then there is a

reduction on the right side of (2), so gkgi = hmhi = 1. Let x' = g2 • • • gt_i,

y' = h2 • ■ • hm-i. Equation (2) becomes x'2 = y'2, where x' has length

k — 2. By the induction hypothesis this implies x' = y', so x = gix'gk

=hy'hm=y.

Thus (a) holds in G.

If b is any element of G, b-Al, then 6=gi, b=g\g2, or b = giwg%,

where each g,- is a generator or the inverse of a generator, and where

b is in reduced form.

If b = gi, then there is a generator g such that gj^gi, gf^gr1. All the

elements g~hbgk, as k ranges over the integers, are distinct and so b

has infinitely many distinct conjugates.

If &=gig2 or b=giwg2, and if gi=g2 or gi=gr1, then there is a gen-

erator g such that g^gi, gy^gt, and hence all the elements g~kbgk, as

k ranges over the integers, are distinct; so b has infinitely many dis-

tinct conjugates. If gi^gs, gi^g2-1, then all the elements g2kbg\, as
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k ranges over the positive integers, are distinct, so b has infinitely

many distinct conjugates.

Thus (c) holds in G; it is well known that G satisfies (b).
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MAXIMAL SUB ALGEBRAS OF GROUP-ALGEBRAS

JOHN WERMER

A closed subalgebra of a Banach algebra is called maximal if it is

not contained in any larger proper closed subalgebra. Let G be a dis-

crete abelian topological group and L its group-algebra, i.e. L is the

Banach algebra of functions/on G with E*e<J |/(X)| < °° and mul-

tiplication defined as convolution. What are the maximal subalgebras

of L? The complete answer is not known even when G is the group

of integers.

Here we assume that G is ordered. Let G+ be the semi-group of non-

negative elements of G and L+ the subset of L consisting of functions

which vanish outside of G+. Then L+ is a proper closed subalgebra of

L.

Theorem l.1 L+is a maximal subalgebra of L if and only if the order-

ing of G is archimedean.

Proof. Suppose the ordering is non-archimedean. Then we can find

a, b in G+ with na<b for n = 1, 2, ■ ■ ■ . Consider the set Gi of all ele-

ments of G of the form g++n(— a), where n = 0, 1, 2, • • ■ and g+ is

in G+. Clearly Gi is a semi-group containing G+ and also —a is in

Cri and — b is not in Gi. Let Li be the closed subalgebra of L con-

sisting of all functions vanishing outside Gi. Then Li lies properly

between L+ and L, whence L+ is not maximal.

Suppose now that the ordering of G is archimedean. Let 31' be a

proper closed subalgebra of L with L+ included in 21'. We shall show

%' = L+.
Let Ex be the function in L with E\(g) =0, g9±\, E\(\) =1. Then
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1 A proof of this theorem has also been found by I. M. Singer. See the note below.


