A NOTE ON DIFFERENCE SETS
D. R. HUGHES

1. Introduction. In [1] R. H. Bruck develops a theory of difference
sets in groups that are not necessarily cyclic. In this note we shall
present examples of such difference sets (where A=1) in not-abelian
groups of countably infinite order; to do this we generalize a method
used by M. Hall in [2]. (For terminology see [1].) The author wishes
to thank R. H. Bruck and R. P. Goblirsch for helpful comments.

2. Construction of difference sets. Suppose G is a group, D a subset
of G, and for every gEG, g1, there exists exactly one pair d;, &:&D
such that g=dids?, and there exists exactly one pair ds, d4&D such
that g=di'ds. Then D is a 1-difference set, or merely a difference set,
for the group G.

LEMMA. Let G be a group and let S be a subset of G; then S satisfies
(i) if and only if it satisfies (ii).

@) sisz7t = st #£ 1, si €8, implies s; = 53, 52 = s4.
(ii) silse = sylsy # 1, s; €S, implies s; = s53, 52 = 54

Proor. Suppose S satisfies (i), and silse=s31s47%1, where the s;
are in S. Then s3sit=sys77L If s;=s3, then sy=s4, and we have (ii); if
s17s3, then s3si15#1, so by (i) we have s3=s4, 51 =52, which contradicts
silss7#1. The other half of the proof is completely similar.

Now let B be a countably infinite group satisfying:

(a) any equation x?=> has at most finitely many solutions x&B
for a given bEB;

(b) B contains no elements of order two;

(c) every element not in the center of B has infinitely many dis-
tinct conjugates.

Suppose D’ is a finite subset of B such that all the quantities
didi!, for dy, deED’, di5#d,, are distinct (whence all the quantities
dild,, for dy, doED’, di5%d,, are distinct). Then we shall call D’ a
partial difference set. Given a partial difference set D’ (possibly
empty) and given an element b&EB such that b#d,di! for any
dy, d2€D’, we shall extend D’ to a partial difference set D'’ in which
b=d\ds! holds for some pair di, &a&ED’'. Then given an element cEB
such that ¢#di'd, for any d;, &ED", we shall extend D"’ to a partial
difference set D"’ in which ¢=di'd; holds for some pair d;, & &D’".
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If we show that this can be done, then we can clearly construct a
difference set D for the group B, since B is countable.

Given bEB as in the above paragraph, note that b71. Letting x
be an arbitrary element of B, consider the elements:

(1)  xdi?, dix™t, badi?, dix 1071, b, b1, did5, where dy, do € D', d; # ds.

We note that b1, and b>#did;!; thus the elements of (1) are dis-
tinct from one another and from the identity, unless at least one of
the following holds:

(1.1) xdilx = dy; (1.2) xdilbx = do;
(1.3) xditbx = b~dy; (1.4) x = didilds;
(1.5) x = blddyds; (1.6) x = bdy;
1.7 x = b1d,; (1.8) x = dy;
(1.9) x = b~%y; (1.10) x'bx = dild,;

where d; € D',

Equations (1.4)—(1.9) are satisfied for only finitely many x. Equa-
tions (1.1)—(1.3) are all of the form xax=c¢, or (ax)?=ac; by hypothe-
sis on B, only finitely many x satisfy (1.1)—(1.3).

Now consider (1.10). If b is in the center of B, this becomes
b=di'd,, or dib=>bd,=d., or b=ddi!; so (1.10) is not satisfied at all
if b is in the center. If b is not in the center, then b has infinitely many
distinct conjugates, so (1.10) is false for infinitely many values of x.

Thus we can choose x (in infinitely many ways) so that all the ele-
ments of (1) are distinct, and none is the identity. If, for such an x,
we let D'’ be the set union of D’ and x and bx, then (1) is the set of all
differences dids, for di, do& D", di#=d,. Hence D" is a partial differ-
ence set, and b =d,d; ! holds for a pair di, d;ED".

Now if ¢c#di'd, for any d;, d;&ED’’, we can use a similar process to
construct a partial difference set D"’ in which ¢=di'd; holds for
some pair dy, d;ED’"’.

Thus we can construct a difference set D for the group B.

Condition (b) is necessary in any group B which contains a differ-
ence set D. For if 5?=1, b1, then b=dd;! for a unique pair
dy, d&:ED; thus b=b"1=dudi!, so di=d, and b=1, a contradiction.

3. Not-abelian free groups. We now show that the not-abelian
free group G with # generators (= 2) satisfies the conditions (a), (b),
(c) of the preceding section.

Suppose x =g, where g is a generator or the inverse of a generator,
and x?=c>1. If y=Mhhs - - - hn is a reduced form for y, and y*=c,
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then if m>1, there must be a reduction in Ak - - - hnhihs - - - by in
particular, knh;=1. The reduction must lead to y?=hhn.=gg, so
k1 =hn=g, which contradicts A.h =1. So m =1, whence clearly y=x.

Now suppose x=gigs is a reduced form for x, where each g; is a
generator or the inverse of a generator, and x?=c31. Then ¢ =g;gsg:1g2
and if this is not a reduced form for ¢, then gog1=1 and x=1, a con-
tradiction.

If y=hbhy - hn is a reduced form for y, and if y2=c¢, then
hihs « + - Buhihy - - - hw=gigeg1ge; this must reduce to hihshm_1hm
=gigsg1gs, Whence hy=hn_1=g and he=hn,=g,. If m=2 then it is
clear that y=x. If m>2, then there was a reduction in the first ex-
pression for y?, and in particular, A.hi=1; thus gogi=1 and x=1, a
contradiction.

Inductively, assume that if the equation 22=¢, for any cEG, c#1,
has a solution x of length <k, then the solution is unique. Suppose

x=gigs - - - g is a reduced form for x, and x?=c#1. Suppose
y=hihs - - - hm, where m 2k, is a reduced form for y, and y?=c. Then:
(2) h1h2 AR hmhlhz AR hm = gng LR gkglgz “ . gk-

In all cases, this implies k1 =g1, bn=gs.

If the right side of (2) is a reduced form for ¢, and if m =4, then
clearly y=x. If m>k then there must be a reduction on the left side
of (2), and in particular, knh=1. But this implies gig1=1, contra-
dicting the assumption that the right side of (2) is a reduced form for
¢. So in this case, y=x.

If the right side of (2) is not a reduced form for ¢, then there is a
reduction on the right side of (2),s0 gig1=rhnb1=1.Let x'=gs - - - g1,
y'=hs - - - hm. Equation (2) becomes x'2=19'?, where x’ has length
k—2. By the induction hypothesis this implies x'=9’, so x=gx'g;
=h1y’hm=y.

Thus (a) holds in G.

If b is any element of G, 51, then b=g;, b=gg,, or b=gwg,,
where each g; is a generator or the inverse of a generator, and where
b is in reduced form.

If b=g, then there is a generator g such that g=g,, g=gil. All the
elements g~*bg*, as k ranges over the integers, are distinct and so b
has infinitely many distinct conjugates.

If b=gigs or b=giwg,, and if g1 =g or g1=g7’!, then there is a gen-
erator g such that g>g,, g#gs, and hence all the elements g—*bg*, as
k ranges over the integers, are distinct; so b has infinitely many dis-
tinct conjugates. If gi#gs, g17gi?, then all the elements gi*bg}, as
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k ranges over the positive integers, are distinct, so b has infinitely
many distinct conjugates.
Thus (c) holds in G; it is well known that G satisfies (b).
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MAXIMAL SUBALGEBRAS OF GROUP-ALGEBRAS
JOHN WERMER

A closed subalgebra of a Banach algebra is called maximal if it is
not contained in any larger proper closed subalgebra. Let G be a dis-
crete abelian topological group and L its group-algebra, i.e. L is the
Banach algebra of functions f on G with erg If()\)l < « and mul-
tiplication defined as convolution. What are the maximal subalgebras
of L? The complete answer is not known even when G is the group
of integers.

Here we assume that G is ordered. Let G* be the semi-group of non-
negative elements of G and L* the subset of L consisting of functions
which vanish outside of G+. Then L+ is a proper closed subalgebra of
L.

THEOREM 1.! L+ is a maximal subalgebra of L if and only if the order-
ing of G is archimedean.

Proo¥. Suppose the ordering is non-archimedean. Then we can find
a, bin G* with na<b for n=1, 2, - - - . Consider the set G; of all ele-
ments of G of the form gt+n(—a), where =0, 1,2, - - - and g*is
in G*. Clearly G, is a semi-group containing Gt and also —a is in
G, and —b is not in G;. Let L; be the closed subalgebra of L con-
sisting of all functions vanishing outside Gi. Then L, lies properly
between L*+ and L, whence Lt is not maximal.

Suppose now that the ordering of G is archimedean. Let ¥’ be a
proper closed subalgebra of L with L+ included in ’. We shall show
A'=L+.

Let E, be the function in L with Ex(g) =0, g\, Ex(\) =1. Then
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1 A proof of this theorem has also been found by I. M. Singer. See the note below.



