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1. Introduction. Let/(x) be an integrable function defined on an

interval (a, b). Its average value is

A(f)=-^—fbf(x)dx.
b — a J a

There are circumstances [l; 2] in which one wishes to calculate not

A(f) but

/   kCfr   dx

B(J)= [Ait1)]-1 = (b -a) —,
I      Ja   f(x)

although A(f) is much easier to calculate. If f(x) is constant, A(f)

= B(f), and it is reasonable to expect that A(f) will be approximately

equal to B(f) if f(x) does not vary too widely. We propose to deter-

mine here the extreme values of the ratio

1(f) = A(f)/B(f)

as / varies over a special class of functions.

Suppose that 0<a<B, and that 21 is the class of measurable func-

tions/(x) defined on (a, b) for which a^f(x) ^0. It is a consequence

of a result of Polya and Szego [3 ] that

(1) 1 ^ 1(f) ^ (cc + 0)*/4aP

when f(x) is in 21. If 93 is the class of concave (i.e., arc lies above

chord) monotone decreasing functions f(x) in 21 which assume the

values a and /3, then we shall prove the better result that

n31n(/3/a)      /3 + al2    I r/31n(/3/«)        1

These same bounds apply if f(x) is a concave, monotone function in

21, since the transformation x' = a+b — x converts increasing functions

into decreasing functions without altering concavity or bounds, and

since the right-hand side of (2) is a strictly increasing function of

B/a.

2. Existence of a maximizing function in 93. Our proof of the in-
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equality (2) consists of a demonstration of the existence of a function

/o(x) in 93 for which 1(f) attains its least upper bound on 93, followed

by the deduction of various properties which any such maximizing

function must possess. There will be precisely one function in 93

possessing these properties and so it must be the maximizing function.

Theorem 1. There exists a function /o(x) in 93 for which 1(f) is a

maximum.

We begin by observing that when/ is concave, there exists a func-

tion f'(x) which is decreasing and integrable on (a, b) such that

f(x) = /(<*+) + f   f'(t)dt, a < x < b.
J a

The set of discontinuities of f'(x) on the open interval (a, b) is a

finite or denumerable set E(f) and so/'(x) is the derivative of f(x) ex-

cept on E(f) and possibly at a and b. In addition when f(x) is in 33,

f'(x) ^0. Moreover/(x) is continuous when a^x<b, and f(b —) ^f(b)

= a.

Lemma 1. 7//(x) is in 93 andc = b — M~1(^—a)>a, thenf'(x) = —M
when a^x^c.

For suppose there were a point y such that a^y^c, f'(y) < —M.

Then, since f'(x) is decreasing, f'(t) <—M when y^t^b. Hence

0 5: f(y) = f(b-) -  f  f'(t)dt > a+ (b - y)M 2: a + (b - c)M = ft

and this is impossible.

Let fi be the least upper bound of 1(f) on 93, and pick a sequence

fn(x) of functions in 93 for which u = lim 7(/„). These functions may

be chosen as continuous. Pick a monotone increasing sequence of

numbers Mk such that

a < ck = b - Mjr1^ - a) -+b.

According to Lemma 1, 0 ^/„' (x) ^ — Mk when a — x — ck, and so the

functions /„(x) are equicontinuous and uniformly bounded on the

closed interval (a, ck). By Ascoli's theorem, there exists a subsequence

of the sequence /„(x) which converges uniformly to a limit gi(x) on

(a, Ci), a subsequence of this subsequence which converges uniformly

to a limit g2(x) on (a, c2), etc. It is clear that g*+i(x) =g*(x) when

a^x — Cjc and that if we define/0(x) as lim gk(x) when a = x<b, then

we can by the diagonal process select a subsequence of /„(x) which
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converges uniformly to/0(x) on every closed interval (a, c) for which

c<b. If we define f0(b) to be a, then it is easy to see that/0(x) is in 93

and that

M = lim /(/„) = 7(/0).

Hence Theorem 1 is true.

Let 50? be the class of maximizing functions for 1(f) in 93; then the

result of Theorem 1 is that 3JI is not void.

3. A useful identity. Most of our remaining analysis will depend

in one way or another on the following result, the proof of which is

obvious.

Lemma 2. 7//0(x) and f(x) are in 93, if ?j(x) =/(x)— /o(x), and if

A(r\) 5^0, then

Kf) ~ 7(/o) A(fB)A(r,/f0f)
-—-= A(f0»)-—-A(v/f0f).

A(v) A(r)

We shall use the lemma first to prove the following result.

Lemma 3. If /o(x) is in 9Jc, then /o(x) is continuous on the closed

interval (a, b).

Since any function in 93 is continuous when a^x<b, it is sufficient

to show thatfo(x) is continuous when x = b. Since fo(b — ) exists, sup-

pose that fo(b —) =a'>a. Choose a positive number 5 for which

a' — 8>cx. Define rj(x, e) as 0 when aSx?*b — e and when x = b, and

so that/(x, e) =fa(x)-\-rj(x, e) is linear on the open interval (b — e, b)

with limiting end values fo(b — e) and a' —8. Hence

a' - 6 - 0 £ v(x, e) < 0 (b - e < x < b).

Then f(x, e) is in 93 for sufficiently small e and so

(1(f) ~ I(fo))/A(V) ̂  0.

From the first theorem of the mean for integrals,

A(v/fof) = A(v)/U(x*)f(x*),

in which b — e<x*<b. Since ^4(tj)—>0,/0(x*)—>a', and/(x*)—>ot' — 5, it

follows from Lemma 2 that

A(f^) - A(h)/a'(a' - h) ^0,

a'(a' -h)= A(U)B(f0).

On the other hand, since/0(x) is decreasing, f0(x) Si a' when a = x<b.
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and so

Mfo)B(fo) ^ a'2.

These last two inequalities are incompatible when 5>0, and so

Lemma 3 must be true.

4. The behavior of the derivative f0' (x) of a maximizing function.

We know that fi (x) is a decreasing, nonpositive function and hence

the set E(fo) of its discontinuities on the open set (a, b) is at most

denumerable. Our next result is the following lemma.

Lemma 4. If f0(x) is in W. then fo (x) is constant on any interval of

continuity of fo (x).

If Lemma 4 is false, there exists an interval (y, z) such that/0' (x)

is continuous when y<x<z and fi (y+) >fi (z —). Therefore, there

exists a decreasing sequence x„ for which xn—>y, fi (x„+i) >/0' (x„).

Define nn(x) as 0 when x is not on the interval (y, xn) and so that

fn(x) =/o(x) +nn(x) is linear on the interval (y, x„) with end values

/o(y) and/0(x„). If r/„(x) were identically zero, /o(x) would be linear

on the interval (y, x„), and so/0' (x„+i) =/0' (x„). Hence rjn(x) does not

vanish identically. Moreover, t;„(x) <0 when y<x<x„-n since it is

convex on the interval (y, x„) and vanishes at the endpoints of that

interval. The function /„(x) is in 93 and so

lim-3: 0.
n^» A(rin)

Moreover,

A(Vn)
A(Vn/f0fn)  = >

fo(Xn*)fn(Xn*)

in which y<xn*<x„, A(r]„)^>0, and so

(3) A(fo*)-A(fo)/[fo(y)]2^0,

Uo(y)]2 ̂  A(fo)B(f0) m C2.

Now define f„(x) as 0 when x is not in the interval (y, x„), and so

that gn(x)=fo(x)+£n(x) is linear on an interval (y, y„) with slope

fi (y+)>1S linear on the interval (yn, x„) with slope fi (xn), and is con-

tinuous on (a, b). Then y<y„<xn and fn(7n)>0, since/0(x) is not

linear on the interval (y, xn). Moreover fn(x)^0 since /o(x) is con-

cave and hence f„(x)>0 when y<x<x„. The function g„(x) is in 93

and so
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,.    7(gB)-7(/0)
hm- g 0.
»-»»       A (f „)

This limit is evaluated exactly as in the preceding paragraph, and we

deduce that

(4) [fo(y)]2 ^ A(f0)B(f0) = C2.

We conclude from the inequalities (3) and (4) that /o(y) = C. It is

clear that we could use the same arguments at z and deduce also that

/o(z) = C. Since/o(x) is decreasing, we must then have that f0(x) = C

when ySx^z, and so /0' (x) =0=/0' (y + ) =/o (z —). From this con-

tradiction we infer the truth of Lemma 4.

5. The set E(f0) of discontinuities of/0'(x). We are going to show

ultimately that the set E(fd) consists of precisely one point for any

function /o(x) in 90}. The first step in this demonstration is the fol-

lowing result.

Lemma 5. 7//0(x) is in 9JJ, then the set E(f0) is not void.

If E(f0) is void, then (a, b) is an interval of continuity of /0' (x)

and so fi (x) is constant on (a, b). This constant must be

OS - «)/(o - b),

and so

(fl-«)(»-a)
/o(x) = 0-——,

(b - a)

(« +/S) In (j3/a)
/(/0) = 2(0 - a)        •

Let us define /(x, e) so that

_    (fi (a^ x^a + e),

' Ij8- 08-a)(*-a-e)/(i-o-«)        (a + e^ x^b).

Then /(x, e) is in 93 and

6        /l + £     2 In £\

e2        /£ - 1 \
+-(-ln£)>

2(b-a)2\   £ /

in which £=/3/a>l.   It is easy to verify that the coefficient of



i955l THE AVERAGE OF THE RECIPROCAL OF A FUNCTION 811

e/2(b — a) is positive when £> 1 and hence 1(f) >I(fo) for sufficiently

small positive e. From this contradiction we infer the truth of Lemma

5.

Lemma 6. If f0(x) is in 9JJ and if y is any point in the set E(f0) then

(6) My) ^C= {A(fo)B(fo)V'2.

We define n(x, e) as 0 when |x — y\ Sie and so that/(x, e) =/0(x)

+rj(x, e) is linear on the interval (y — e,y+e) and continuous on (a, b).

Then rj(x, e) <0 when y — e<x<y+e,f(x, e) is in 93, and so

t-K»        A (r))

The limit may be evaluated exactly as in the proof of Lemma 4,

and leads immediately to the inequality (6).

Lemma 7. If f0(x) is in 2R and if y is any point in the set E(f0) for

which there exists another point z in E(/0) such that z<y and the inter-

val (z, y) contains no other points of E(fo), then

fo(y)=C= {A(fo)B(fo)Y12.

Choose X so that fi (z+) <X</0' (z —). Define r](x, X) as 0 when

a^x^z and when y^x^b and so that/(x, X) =fo(x)+t](x, X) is linear

on an interval (z, y) with slope X, is linear on the interval (7, y) with

slope fi(y + ), and is continuous on (a, b). Since /o(x) is linear on the

interval (z, y) with slope fi(z+), we have that z<y<y and that

7)(x, X)>0 when z<x<y. Hence

Kf) - /(/.) < n
lim sup ■——-^ 0.
x-/g'(H0       A(ri)

Since 17(x, X) 2;0 and both/0 and/ are decreasing

-A(v/fof)^ - A(v)/[fo(y)]2.

Since A(rj)—>0, we deduce that

0>A(fo*)-A(fo)/[U(y)]2,

My) ̂  c.

Since Lemma 6 holds, we conclude that Lemma 7 is true.

Lemma 8. If fo(x) maximizes 1(f) on 93, and if y is any point in the

set E(f0) for which there exists an increasing sequence zn of points of

E(f0) which converge to y, then f0(y) = C= {;l(/o)5(fo) }1/2.
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Define nn(x) as 0 when a^x^zn and y^x^b, and so that/„(x)

=/o(x)+7jn(x) is linear on an interval (z„, y„) with slope fi (zn —),

is linear on the interval (y„, y) with slope fi (y + ), and is continuous

on (a, b). Then z„<7„<y and ijn(x)>0 when zn<x<y since a corner

z„+i occurs on the open interval (zn, y). Hence

^(fr1)-— = hm - ^ 0,
[My)]2     —     i(%)

/o(y) ^ C.

Since Lemma 6 holds, we conclude that Lemma 8 is true.

Lemma 9. 7//0(x) is in SOc, /feew /fee set E(f0) has at most two points.

Suppose on the contrary that E(f0) has three distinct points

u<v<w. Then either Lemma 7 or Lemma 8 applies to the points v

and w and sof0(v) =fo(w) = C. Since/0(x) is decreasing,/0(x) = C when

v<x<w, fi (v + ) =0. On the other hand, fi (x) is a nonpositive de-

creasing function and fi (v + ) <fi (v —) ^0. From this contradiction

we infer that Lemma 9 is true.

Lemma 10. 7//0(x) is in 50J, and if the set E(f0) has exactly two points

y<z, then fo(y) =/3, f0(z) = C. If E has exactly one point y, then either

fo(y) =por f0(y) = C= {A(f0)B(f0)}"«.

Suppose in either case thatfo(y) </3. Then define tj(x, e) as 0 when

x^y and so that/(x, e) =/0(x)+?7(x, e) is linear on the interval

(y—e, y) with slope fo'(y+), is linear on the interval (a, y — e), as-

sumes the value /3 when x = a, and is continuous on (a, b). Then

n(x, e)>0 when 0<x<y, A(r])—>0 with e, and/(x, e) is in 93 for suffi-

ciently small positive e. Hence

-A(n/M)= - A(v)/[f0(y)]2.

Since ^4(rj)—>0,

rffl-fl/.).. .„_,.      Mi.)
D6taMp__ai4t/..,___,

and so fo(y) ^ C. Since Lemma 6 holds, fo(y) = C. This is sufficient to

prove the second sentence of Lemma 10. If E(fo) has another point

z>y, then fo(z) = C also since Lemma 7 holds. Hence /o(x) = C when

y^xgz,/o (y+) =0, and this is impossible. From this contradiction

we infer the truth of the first sentence of Lemma 10.

Lemma 11. 7//0(x) is in 9Jt, then the set E(f0) has exactly one point.
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Suppose on the contrary that E(f0) has exactly two distinct points

y<z. Then from Lemma 10, fo(y) =B, fo(z) = C and /o(x) is linear on

the intervals (a, y), (y, z) and (z, b). Define/(x, e) to be/0(x) on the

intervals (a, y) and (z, b), linear with slope fi (z+) on the interval

(z —e, z), linear on the interval (y, z— e), and continuous on (a, b).

Define

(z — y)    r /
A=' AH(z-)-f'o(z+)\.

2(o — a)

Then A>0, and

A(f) =A(fi)+eA,

Mt1) =A(U')+eAAi + 0(e2)

in which

A 2      /lnQVC)      n

:'(3-Cl^-c""c/'

Hence

/(/) = /(/o) + ^{^(/o-1) + ^4(/o)Ai} + 0(e2),

and so the coefficient of eA must be nonpositive. On the other hand,

since C2=A(fQ)B(f0),

A(f0)  i 2     / In f \)

in which f = /3/C>l. The quantity within the braces is always posi-

tive when f>l, and from this contradiction we deduce the truth of

Lemma 11.

Lemma 12. If fo(x) is in 9JJ the value f0(y) at the unique discontinuity

y offi (x) is p.

Suppose on the contrary that f0(y) <B- According to Lemma 10,

fo(y) = C. Let f(x, e) be defined as in the proof of Lemma 10. Then

A(f) = A(f0) + eA2,

A(f) =A(Mi)+eA2Ai+0(e2),

in which

A* = -(,y~ ̂  Ift(y-) - fi(y+)] > o.
2(6 — a)
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Hence

/(/) = 7(/o) + <A2{A (/0-i) + A(f0) Ai} + 0(e2).

Since the coefficient of eA2 is the same quantity encountered in the

proof of Lemma 11, it is positive and so 7(/)>7(/0) for sufficiently

small positive e. From this contradiction we infer the truth of Lem-

ma 12.

6. The maximizing function/0(x). We are now in a position to prove

our principal result.

Theorem 2. If f(x) is in 93, then

1 S Kf) S Kh),

in which

f(x)= f {a ~ X ~ y)'
\j3-(fi- a)(x - y)/(b - y) (y^xS b),

p   (&-a)((l + £)/£-21n£/(£-l))
y = a H-•

2(ln £ - (£ - l)/£)

As a consequence of the preceding lemmas, we know that any maxi-

mizing function /o(x) must be of the form described in Theorem 2

for some value y. If y = o+e we have already 7(/0) in equation (5).

This equation may be written as

7(/0) = L + Mu + Nu2,

in which

(£+l)ln£
Li   =   - 7

2(£ - 1)

1 (1 + £      2 In £\
M = — (-) >0,

2 \    £ £ - 1/

V«}(^-l.f)<0,

u = (y - a)/(b - a),

£ = fi/ot.

This function of w is concave and attains its maximum value when

w = - M/2N.

Since M>0, N<0 and 2N+M<0, this value of u lies in the open
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interval (0,1) and yields the value of y specified in the theorem. The

maximum value is (4LN— M2)/4N, and this value is the one speci-

fied in the inequality (2).

Hence the only maximizing function possible is the one specified

in Theorem 2. Since a maximizing function is known to exist, this

function must be a maximizing function and in fact the only maxi-

mizing function.

A short table of values of the upper bounds in (1) and (2) as a func-

tion of the ratio Bla 1S given below.

B/a upper bound on 21        upper bound on 93

1.0 1.0000 1.0000
1.5 1.0417 1.0171
2.0 1.1250 1.0481
2.5 1.2250 1.0816

3.0 1.3333 1.1146
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