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Introduction. In a study of the family of continuous real-valued

functions defined on a topological space, Chittenden [4]2 introduced

a class of topological spaces characterized by the property that each

point of the space is a zero-set for some continuous function. In this

paper we consider a variant of this concept which is embodied in the

following

Definition 1. A topological space is a Gs-space in case each point

of the space is a Gg.

In the first section we investigate a few of the properties of G5-

spaces, and show, in particular, that for completely regular spaces

Definition 1 agrees with that of Chittenden. Burrill [3] has proved

that completely regular Gs-spaces are characterized by their lattice of

zero-sets. Our main result is that the lattice of all real-valued continu-

ous functions on a completely regular Gs-space characterizes the

space. We devote sections two and three to the proof of this result.

This proof is obtained by means of techniques similar to those of

Shirota [lO].

The author wishes to acknowledge his gratitude to Professor M. F.

Smiley for his kind and patient advice during the preparation of this

paper.

1. Gj-spaces. In this first section our aim is to investigate the

separation and covering properties of the class of Gj-spaces, to study

the Cartesian products of Ga-spaces, and to obtain a characterization

of Gj points of completely regular spaces.

Obviously, topological spaces which satisfy the first axiom of

countability at each point and, in particular, spaces which are

metrizable are Gj-spaces. Also, the perfectly normal spaces are Gj-

spaces. As subsequent examples will show, the class of Gj-spaces is

far broader than the class of spaces satisfying the first axiom of

countability. We observe that every G5-space is T\\ but, as the fol-

lowing example shows, Gj-spaces need not be Hausdorff.
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Example 1. Let X be the natural numbers topologized by defining

as an open base all subsets of the form FKJ[k; k = m] where F is a

finite subset of X and m is a natural number. Then, as is easily veri-

fied, X is a Gs-space which fails to be Hausdorff. We note that X is

both countable and connected, and, therefore, the only real valued

continuous functions on X are constants. Thus, the points of X are

not zero-sets.

Next, we give an example due to Hewitt [6] of a nonregular

Hausdorff Gs-space.

Example 2. Let X be the set of all real numbers topologized by

taking as an open base the usual open intervals with at most a count-

able set of points deleted. Then X is clearly a Hausdorff Gs-space, but

it fails to be regular.

Bing [l, Example B] has given an example of a non-normal, locally

metrizable space. Hence, regular Gj-spaces need not be normal. Our

next example shows that there exist completely regular Gs-spaces

which fail to satisfy the first axiom of countability.

Example 3. Let X be the polar plane [(r, 0); r^O, O^0<2ir]. For

(r, 8) EX, r>0, define a basis of neighborhoods to be all sets of the

form [(ri, 6); \ri — r\ <e] where 0<e<r. Define as a basis of neighbor-

hoods of (0, 0) the sets of all points (r, 6), 0^r<e and O=0<2ir, ex-

cept for at most finitely many values of d. Then it is easy to establish

that X is a Gs-space, but the first axiom of countability fails at (0, 0).

In addition X is obviously completely regular.

We note that the space of Example 3 is not locally compact. In

fact, as was pointed out by Chittenden [4, p. 317], a locally compact

Hausdorff Gs-space satisfies the first axiom of countability at each of

its points.

For the Cartesian product of separable metrizable spaces to be

metrizable, it is both necessary and sufficient that the number of

factors be countable. Similarly, for Gs-spaces we have

Theorem 1. A necessary and sufficient condition that the Cartesian

product of a family of Gs-spaces, each having at least two points, be a

Gs-space is that the family be countable.

Proof. The sufficiency is obvious. The necessity is an immediate

consequence of the fact that if the number of factors was uncountable,

then any countable family of open sets in the product space would

have at least one common component consisting of the entire factor

space.

Now, let X be a completely regular topological space and denote

by CP(X) the space of all real-valued continuous functions defined
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on X, endowed with the topology of simple convergence on finite

subsets of X. That is, as a sub-basis of open subsets for CP(X) take all

subsets of the form [fECp(X); |/(x)-/0(x)| <e] for xEX,f0ECp(X),

and e>0. This is the ^-topology in [7]. It is well known that CP(X)

is regular. If A is a dense subset of X and Rx is, for each x£^4,

homeomorphic to the real numbers in their usual topology, then it is

clear that CP(X) is homeomorphic to a dense subset of the Cartesian

product space 11(7?,,; x£^4) with the property that each projection of

this subset onto each factor consists of the entire factor. Recalling

that a separable space is one with a countable dense subset, we prove

Corollary. The following statements are equivalent:

(a) X is separable,

(b) Cp(X) is a separable metric space,

(c) Cp(X) has at least one Gj point.

Proof, (a)—>(b). Since X is separable, there is a countable dense

subset A of X. Then W(RX; x£^4) is a separable metric space; hence,

CP(X), as a dense subset, is a separable metric space.

(b)—>(c). Every metrizable space is a Gj-space.

(c)—>(a). If X is nonseparable, then, by the above remarks and

Theorem 1, CP(X) is not a Gj-space. Hence, there is an fECp(X)

which is not a Gs. However, the neighborhoods of any gECp(X) are

obtained from those of/ by translation. Therefore, no point of CP(X)

is a Gs if X is nonseparable.

We observe that CP(X) is a topological group under the usual oper-

ation of addition. It is known that a topological group is metrizable

if and only if it satisfies the first axiom of countability. As a result,

we are led to ask whether there exist any topological groups which are

Gj-spaces but are not metrizable. Certain of the T^J-spaces of Dieu-

donne and Schwartz [5] provide an affirmative answer.

Our final result of this section is a very useful characterization in

terms of continuous functions of Gs points in completely regular

spaces.

Theorem 2. An element x of a completely regular space X is a Gs

if and only if there is a function fEC(X) such that f(x) 9if(y) whenever

X9^y.

The proof is quite easy and will therefore be omitted.

The class of spaces considered by Chittenden consists of those

spaces which satisfy the condition of Theorem 2. It is not difficult to

see that this condition is satisfied by spaces more general than com-

pletely regular G8-spaces; however, in the following two sections,
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little, if anything, is to be gained by considering this slight generaliza-

tion.

2. The lattice C+(X). The family of all real-valued continuous

functions defined on a topological space X forms a distributive lattice

[2], which we denote by C(X), where (/Vg)(x) =max (f(x), g(x)) and

(/Ag)(x)=min (/(x), g(x)) for all xCX. In this section we review

some of the properties of C+(X), the sublattice of C(X) consisting of

all non-negative functions. We denote the least element of C+(X)

by 0.
Throughout the remainder of the paper X will stand for a com-

pletely regular space. Furthermore, if A is a subset of a topological

space, then A~ will denote the closure of A and A' will denote the

complement of A. Thus, A~'~' is the interior of A~.

Definition 2 (Shirota [l0]). We define the binary relations C and

« on C+(X) by

(i) fCg in case gA^ = 0 implies fAh = 0, for all hCC+(X);
(ii) /<3Cg in case every subset [ha; aE&] of C+(X), which has an

upper bound in C+(X) and is such that haCf(aC&), has an upper

bound hCg-
We note that both of the relations C and <<C are transitive. If

fEC+(X), then we set P(f) = [xEX; f(x)>0].
The following lemma is due to Pierce [9].

Lemma 2.1. Let f, gEC+(X). Then

(a) P(fAg)=P(f)r\P(g),
(b) P(fVg)=P(f)VP(g),
(c) P(fAg)-'-'=P(f)-'-'r\P(g)-'-',
(d) fCg if and only if P(f)~CP(g)~.

We say that two subsets A and B of X are completely separated in

X in case there is an fEC+(X) such that/(x) =0 (xG-4) and/(x) = 1

(xEB). The following lemma is due to Shirota [l0].

Lemma 2.2. (a) /«g if and only if P(f)~ and P(g)~'~ are completely

separated in X,

(b) /i«gi andf2<Kg2 imply /iA/s«giAg2.

Next, we note for future use the following obvious facts about the

usual ring operations of positive continuous functions.

Lemma 2.3. If f and g are positive real-valued continuous functions

on X, then P(fg) = P(fAg) and P(f+g) =P(fVg).

Lemma 2.4. Let xEP(g)~'~' for some gEC+(X). Then there exists an
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fEC+(X) such thatf<Zg and x£P(/).

Proof. Let U be an open set such that x£ UE U~CP(g)~'~' and

4>EC+(X) such that 0(x)=2 and <p(y)=0 (y£Z7); thus, <i>Eg. Set

V=[z;<p(z)>l] and choose/£C+(X) such that/(x) = l and/(2)=0

(2£F). Then <p(z)^l (zEP(f)~) and <p(y)=0 (yEP(g)~'~), since

UCP(g)-'-' implies <7fYP(g)-'- = 0. Hence, P(g)-'"C U'CP(<i>)', so
that xEP(f) and/«g.

Our final lemma, due to Kaplansky [8], states, in effect, that C+(X)

is completely determined by C(X).

Lemma 2.5. IffEC(X) and Cf(X) = [gEC(X); g^f], then Cf(X) is
lattice isomorphic to C+(X).

3. The characterization theorem. It is evident from Lemmas 2.1

and 2.2 that the relations C and « on the lattice C+(X) yield a con-

siderable amount of information about the space X. In fact, Pierce

[9] has shown by means of the former relation that the lattice of

regular open sets of X is characterized by C+(X). In this section we

establish, by means of both relations, that completely regular Gj-

spaces are characterized by the lattice C(X). Throughout this section

X will denote a completely regular Gj-space, although Lemmas 3.1,

3.2, 3.3 hold in any completely regular space.

Definition 3. A countable subset {/„} of C+(X) is called a G-set

in case

(1) 0</n+1«/nfor« = l, 2, • • • ,

(2) A:-.i/n = 0.
We call a G-set {/„} free in case whenever {hn\ EC+(X) is such that

hnEfnChn (n = 1, 2, • • • ), then {hn} has an upper bound in C+(X).

A G-set which is not free will be called fixed. Let Q denote the family

of all fixed G-sets of C+(X). A set {/„} in Q is irreducible provided

whenever {gn\, {hn\ in Q are such that {g»A/n} and {hn/\fA are

in Q, then {gn/\hn\ is in Q. Let 3 denote the family of all irreducible

fixed G-sets of C+(X).

We now pause briefly to outline the proof of the desired character-

ization theorem. We first show that a G-set {/„} is fixed if and only

if DiT-i P(/n)-5^0, and that it is irreducible if and only if this inter-

section consists of a single point. Next we establish that each element

of X is in the intersection H^-i P(fr)~ for some irreducible fixed G-set

{/„}. Then an equivalence relation is defined on 3 in an obvious way,

and the equivalence classes are endowed with a variation of the

Stone topology. The resulting topological space is shown to be

homeomorphic to X, from which we conclude that C+(X) character-
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izes X as a completely regular Gs-space. The final result is then

obtained by an application of Lemma 2.5.

Lemma 3.1. If {/„} and {gn} are G-sets, then

n p(j» a gn)- = r n p(fn)-] n r n p(«»)-"|•
n=l L.71-1 J Ln-1 J

Proof. By Lemmas 2.1(c) and 2.2(a) and (b), P(fn+i)-r\P(g„+i)-

CP(fn)-'-'nP(gn)-'-'=P(fnAgn)-'-'CP(fnAgn)-CP(fn^Agn-l)-'-'
= P(fn-l)-'-'^P(gn-l)-'-'CP(fn-l)-r\P(gn-l)-. HettCe,   [n;.l  P(fn)~]

n[n:.i p(gn)-]cr\;.i p(/»Ag„)-c[n;-. p(/n)-]n[rd p(g„)-].

Lemma 3.2. If {/„} « tw £, then n"=i P(/n)-^0.

Proof. Suppose n"-i P(fn)~ = 0 and KCfnCK (n = l, 2, • • • )•
Then, by Lemma 2.1(d), P(hn)- = P(fn)- (» = 1, 2, • • • ). If {/?„}
can be shown to possess an upper bound in C+(X), then it follows

that {/„} is free. Define

h(x) = fl K(x) (x E X).
n-l

Now m>n implies fm<gf„, so that by Lemma 2.2(a), P(hm)~ = P(fm)~

CP(fn)-'-'CP(fn)- = P(hn)-. Hence, h(x) = YZ-i *<(*) for all
xEP(fn)~'. Thus, h is continuous at every xGU"„i P(fn)~' = X.

Therefore, since hn^h (« = 1, 2, ■ • • ) and ^GG+(X), {/„} is free.

Lemma 3.3. If {/„} is a G-set and r\n-iP(fn)~T*0, then {/«} is fixed.

Proof. Let xGrCi P(/»)_- Since/„+!«/„ (n = l, 2, ■ ■ ■), it fol-
lows from Lemma 2.2(a) that xGDiT-i P(/n)~'~'. Thus, since X is

completely regular, for each positive integer n there exists a function

gnEC+(X) such that g„(x) =n and g„(y) =0 for all yG?(/„)-'-. Then

P(g„)CP(/n)-'-'- = P(/„)- Let hn = gn+fn (»-l, 2, ■ • • )■ Then, by

Lemma 2.3, P(/jn)- = P(gn)-WP(/„)- = P(/n)-, so that KCfnCK

(n = l, 2, ■ ■ •). However, since /i„(x)^« for each w, {&„} does not

have an upper bound in C+(X), and therefore, {/„} is fixed.

Lemma 3.4. Let xCX and { Ux,„} be a countable family of neighbor-

hoods of x such that Ux,mCUx,n (m>n) and [x]=nr.i Ux,n- Let

fx,nEC+(X) (» = 1, 2, • • • ) be such that fx,n(x)=l/n, fx.n(y)=Q

(yf£Ux,n), andfx,m<£fx,nfor m>n. Then {fx,n\ is in 3.

Proof. We observe first that since X is completely regular and x

is a Gs, the sequence { Ux,n) exists in X, and, by Lemma 2.4, the

functions/X|„ (n = l, 2, ■ ■ ■ ) exist in C+(X). Also, it is clear that
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{/i,n} is a G-set, and, since {n2fx,n} fails to have an upper bound in

C+(X), it follows that {/x,n} is fixed. Now let {g„}, {hn\ in Q be

such that {gnAJx.n} and {hn/\fx,n\ are in Q. Then, by Lemma 3.2,

fCl    P(gnA/x,n)-^0,    and,    Since    n«"-l    P (gnNx.n)~E?C-l    P(fx,n)~

= [x], it follows that [x]=(ln=i P(gnAfx,n)~- Thus, similarly, [x]

= 11^-1 P(hn/\fx,n)~. By Lemma 2.2(b), gmA/*,m«gnA/x,n for m>n,

and consequently, P(gm/\fx,m)~CP(gn/\fx,n)~'~'CP(gn)-'~' for m>n.

Thus, xEP(gn)~ (n = l, 2, ■ ■ ■ ), and similarly, x£P(/s„)_ (n = l,

2, ■ • •). Hence, by Lemma 3.1, x£fir.i P(gnAhn)~ and also

gnA^n>0 (n = l, 2, • • • ). Then from Lemma 2.2(b) and the fact

that AiT-i (gnAhn)^An-i gn = 0, it follows that {gnAhn] is a G-set.

However, since x£fln-i P(gn/\hn)~, Lemma 3.3 implies that {gnAhn\

is in Q, and thus {fx,n} is in 3.

Lemma 3.5. If {/„} is in 3, then f\n-i P(fr)~ is a single point of X.

Proof. By Lemma 3.2, OT-i P(/„)-^0. Suppose x, y£n»-i P(Jn)~

with x?fy. Since X is completely regular, there exist open sets U and

V such that xEU, yEV, and c7_/AF_ = 0. Now we may choose

{fx.n} and {fy.n} as in Lemma 3.4 such that P(fx,n)EU and P(fv,n)

C V for w = l, 2, • • • . Then clearly {fx,n/\fv.n} is not a G-set. Since

*en,'-l   P(fn)~   and   *en"-l   -?(/.,.),   it   follows   that   P(fr,n)r\P(fn)
= P(fx,nAfn)^0; thus, /x,nA/n>0 (» = 1, 2, • • • ). From Lemma

2.2(b) and the fact that/x,„A/n=/n we conclude that j/Iin/yf,) is a

G-set. Moreover, by Lemma 3.1, x£[n;,! P(fx,n)~]r\ [n^-i -?(/-)"]

implies x£fl1T-iP(/x,nA/7l)_. Therefore, {/x,nA/n} is in f^, and, simi-

larly, {/„,„A/n} is in f^". This contradicts the hypothesis that {/„}

is in 3. Thus, fliT-i P(fn)~ is a single point of X.

Definition 4. We define the binary relation ~ on 3 by {/„} ~ {g„}

in case {/„Ag»} is in 3.

Lemma 3.6. {fn)~{gn} if and only if n»-i P(fn)- = f)n-i P(gn)~.

Proof. By Lemma 3.5, there are unique elements x, yEX such

that [x] = n„"-i P(fn)~ and [y] = n»"-i p(g»)~- Als0- bY Lemma 3.5, it
follows that {/„Ag»} is in 3 if and only if there is an unique element

zEX such that [z]=n"_i P(/nAg»)-. Hence, by Lemma 3.1, {/„}
'^'{g„} if and only if x=y = z.

The following important lemma is now an immediate consequence

of Lemma 3.6.

Lemma 3.7. The relation ~ is an equivalence relation.

Definition 5. Let 3~ be the family of all equivalence classes

{/„} ~ of 3 determined by ~. Let <B be the set of all subsets of 3~
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of the form

B(f) = [{fn}~; /««/ for some fm]

for all fEC+(X).

Lemma 3.8. © is an open basis of a topology for 3~. We denote the

resulting topological space by 5(3~, X).

Proof. It will suffice to show that B(f)r\B(g) =B(fAg). Clearly,

B(fAg)CB(f)nB(g). Let {fn}~EB(f)r\B(g). Then there are {/„}
and {/„*} in {/n}~ such that /*«/ and /P*«g for some integers k and

p. By Lemma 2.2(b), /mAfm*<5C/Ag where ml%k, p. Also, by Lemma

3.7, {fnAh*} is in j/n}~. Hence, {/n}~ is in B(fAg), and thus <B

forms an open basis for 3~.

Lemma 3.9. The space S(3~, X) is homeomorphic to X under the

mapping x-»{/»,»}~.

Proof. By Lemmas 3.4, 3.5, and 3.6, the mapping is one to one

of X onto 3~. We now note that since X is completely regular, the

sets P(f)~'-' (fEC+(X)) form abasis of open sets for X. UxEP(f)-'-',

then by Lemma 3.4, there is an irreducible G-set [fx,n] such that

P(fx,i)-CP(f)-'-' and thus, by Lemma 2.2(a), /*,2«/, so that

{fx.n)~EB(f). On the other hand, if {fx,n)~EB(f), then/x,m«/ for

some m. However, by Lemma 2.2(a), P(fx,m)~CP(f)~'~'; thus,

xEP(f)~'~'- Consequently, the mapping is bicontinuous.

Now we are able to obtain the desired characterization.

Theorem 3. A completely regular Gs-space is characterized by its

lattice of real-valued continuous functions.

Proof. Let X and Y be completely regular Gs-spaces such that

C(X) and C(Y) are isomorphic. Then, by Lemma 2.5, C+(X) and

C+(Y) are isomorphic. Thus, S(3~, X) and S(3~, Y) are homeo-

morphic, and finally, by Lemma 3.8, X and Y are homeomorphic.

Shirota [10] proved that the lattice C(X) also characterizes spaces

which are locally compact and paracompact or ^-spaces in the sense

of Hewitt [7], Example 3 shows that our result is not subsumed in

the first of these characterizations and the space Ta of all ordinals

less than the first uncountable ordinal [7; p. 63], which is a completely

regular non-()-space satisfying the first axiom of countability, shows

that Theorem 3 is not subsumed in the Q-space characterization.

The ring of real-valued continuous functions defined on a space

characterizes the lattice (see [8]); thus we obtain as a corollary to

Theorem 3 the result that completely regular Gs-spaces are character-
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ized by their rings of real-valued continuous functions. This latter

result has been obtained independently by L. E. Pursell.

Bibliography

1. R. H. Bing, Metrization of topological spaces, Canadian Journal of Mathematics

vol. 3 (1951) pp. 175-186.
2. G. Birkhoff, Lattice theory, rev. ed., New York, 1948.

3. C. W. Burrill, Characterizing systems of continuous functions, Doctoral disserta-

tion, 1952, State University of Iowa.

4. E. W. Chittenden, On general topology, Trans. Amer. Math. Soc. vol. 31 (1929)

pp. 290-321.
5. J. Dieudonne and L. Schwartz, La dualiU dans les espaces (jf) et (jCJ), Ann.

Inst. Fourier vol. 1 (1950) pp. 61-101.

6. E. Hewitt, A problem of set-theoretic topology, Duke Math. J. vol. 10 (1943)

pp. 309-333.
7. -, Rings of real-valued continuous functions, Trans. Amer. Math. Soc. vol.

64 (1948) pp. 45-99.

8. I. Kaplansky, Lattices of continuous functions, Bull. Amer. Math. Soc. vol. 53

(1947) pp. 617-623.
9. R. S. Pierce, The Boolean algebra of regular open sets, Canadian Journal of

Mathematics vol. 5 (1953) pp. 95-100.

10. T. Shirota, A generalization of a theorem of I. Kaplansky, Osaka Math. J.

vol. 4 (1952) pp. 121-132.

State University of Iowa


