
ON METRIC INDEPENDENCE AND
LINEAR INDEPENDENCE

L. M. BLUMENTHAL1 AND V. L. KLEE2

For a metric space M, CM will denote the Banach space of all

bounded real-valued continuous functions on M, with the usual

ll/H =sup!£in-|/(x)|. It is well-known that M is homeomorphic (and,

in fact, isometric) with a subset of CM [4, p. 543]. We show here

that M must be homeomorphic with a linearly independent subset of

CM. Whether M must be isometric with such a set remains unde-

cided.

Let the distance between two points x and y of M be denoted by

xy, and for each xCM letfx be the function xy\yCM. The subset A

of M is said to be metrically dependent in M provided the family of

functions {fa:aCA } is linearly dependent over M. Otherwise, A is

metrically independent in M. This notion leads quickly to the desired

result, by means of the following observations.

(1) If A is a subset of a (not necessarily separable) Hilbert space E,

then A is metrically independent in A.

Proof. It suffices to show that if pi, ■ • ■ , pn are n distinct points

of A and d is the value of the determinant | pipj\ i,n, then d^O. But

since the subspace of E determined by {pu ■ ■ ■ , pn] is a Euclidean

space of dimension ^n, this follows at once by an argument of

Schoenberg [5, p. 792]. (See also [2, §40 and §54].)

(2) If M is a metric space, then M has a bounded homeomorph in

which every subset A is metrically independent in A.

Proof. By a theorem of A. H. Stone [6], M is paracompact, and

hence by a theorem of C. H. Dowker [3, p. 639] there is a Hilbert

space whose unit sphere contains a homeomorph of M. The desired

conclusion then follows from (1).

(3) If M is a metric space, then M is homeomorphic with a linearly

independent subset of CM.
Proof. In view of (2), we may assume that M is bounded and that

every subset A of M is metrically independent in A. Now let TD

—fx\xCM, where fx is as defined above. From the fact that M is

bounded and from the definition of metric independence it follows
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that TM is a linearly independent subset of CM. Since T is an isom-

etry, the proof is complete.

Now if (in the proof of (3)) TM is separable, then so is the linear

subspace of CM spanned by TM. From a well-known embedding

theorem of Banach and Mazur [l, p. 185] there follows

(4) Every separable metric space is homeomorphic with a linearly

independent subset of C [0, l].

We do not know3 whether every separable metric space is isometric

with a linearly independent subset of C [0, 1 ], although it is easy to

see that every finite metric space has this property.

Now for an arbitrary metric space M, let K be the unit cell

{/: 11/11 =1} °f tne space (CM)* dual to CM. Then K is compact in
the weak topology, and there is a natural linear isometry of CM into

CK. Thus we have

(5) For each metric space M there is a compact Hausdorff space K

such that M is homeomorphic with a linearly independent subset of CK.

We conclude with some remarks on metric dependence.

(6) If a metric space M has fewer than four points, then M is metri-

cally independent in M.

A metric quadruple is pseudo-linear [2, p. 110] provided each of its

triples is linear (i.e., isometric with a subset of E1), but the quadruple

itself is not linear.

(7) For a metric quadruple Q, the following three assertions are

equivalent:

(i) Q is pseudo-linear.

(ii) The points of Q can be so labelled that qiq2=q3qi=:a>0, q2q3

= qiqi=b>0, and qlq3 = q2qi=a+b.

(iii)  Q is metrically dependent in Q.

Proof. That (i) is equivalent to (ii) is noted in [2, p. 114]. From

(ii) it follows easily that the determinant |<Zi<Zj|i,4 is zero, whence

(ii) implies (iii). That (iii) implies (i) can be proved by applying

results of [l] (in particular, pp. 131 and 293) to the metric transform

of Q by the function <p(x) =x1/2, but we give here a more elementary

proof.

Suppose Q is metrically dependent in Q; i.e., yif aifqi = 0 for num-

bers a{ not all zero. Since, by (1), Q is not linear, to show that Q is

pseudo-linear it suffices to show that each triple in Q is linear. It is

clear that no a, can be different in sign from all the other three, for

/,,. vanishes only at g<. Thus with notation appropriately chosen we

3 Added in proof: An affirmative answer to this question follows from a recent

theorem of Arens, to the effect that every metric space is isometric with a closed

linearly independent subset of some normed linear space.
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have Q= {w, x, y, z} and positive numbers a, b, c, and d such that

(a) afw + bfx=cfy+dfz. Evaluating (a) at w and then at x, adding

the results and using the triangle inequality, we obtain (j3) (a + b)xw

= c(xy+yw)+d(xz+zw) ^ (c+d)xw. And similarly (evaluating (a) at

y and then at z), (y) (c+d)yz = a(yw+wz)+b(yx+xz)^(a + b)yz. But

(J3) implies c+d^a + b and (7) implies a+b^c+d, so a+b=c+d

and the inequalities in (j3) and (7) can be replaced by equalities,

whence we see at once that each triple in Q is linear.

An easy corollary of (7) is

(8) A quadruple Q in a metric space M is metrically dependent in

M if and only if Q is pseudo-linear and pq\+pq%=pq2+pqi for each

PCM (where the labelling is as in (ii) of (7)).
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