
THREE POINT ARCWISE CONVEXITY

F. A. VALENTINE

Let 5 be a set in a two dimensional Euclidean space E2. Such a

set 5 is said to be arcwise convex [5] if each pair of its points can be

joined by a convex arc lying in S. A convex arc is, by definition, an arc

which is contained in the boundary of a plane convex set. In two

previous papers, [5; 6], the author studied certain properties of closed

arcwise convex sets. It is the purpose of this paper to study an inter-

esting class of sets which satisfy the three point arcwise convexity

property, defined as follows:

Definition 1. A set SQE2 is said to have the three point arcwise con-

vexity property if each triple of points x£S, y £S, z(E.S is contained in

a convex arc belonging to S.

It should be observed that the above property implies there exists

a convex arc in 5 having two of the three points x, y, z as end points

and the third point in its interior.

Definition 2. A convex curve, as distinguished from a convex arc,

is a closed connected portion of the boundary of a plane convex set.

A convex curve may have two, one, or no end points, and it may be

bounded or unbounded.

The following theorem characterizes the closed sets in E2 which

have the three point arcwise convexity property.

Theorem 1. Let S be a closed set in E2 which has at least three points.

Then S has the three point arcwise convexity property if and only if it

satisfies at least one of the following three conditions.

1. It is a closed convex set.

2. It is a convex curve.

3. It is a closed convex set except for one bounded convex hole, that is,

it is obtained by deleting from a closed convex set a bounded open convex

subset.

In order to prove the necessity of Conditions 1-3, we shall estab-

lish four lemmas. In each of them it is assumed that S is a closed set

which has at least three points, and which has the three point arcwise

convexity property.

Lemma 1. If x, y, z are three collinear points of S, with y between x

and z, then at least one of the closed segments xy or yz belongs to S.
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Proof. In this and later proofs we use the following notation.

Notation. The boundary of a set C is denoted by B(C). A convex

arc in 5 containing the points x, y, and z and having two of them as

end points is denoted by C(x, y, z).

To prove Lemma 1, let H be the convex hull of C(x, y, z) -\-xz. Since

C(x, y, z) is a convex arc, we have C = C(x, y, z) (ZB(II). This implies

that if z is an end point of C, then xyQS. On the other hand, if z is

not an end point of C, then yz(ZS.

Lemma 2. Suppose a component K of the complement of S exists which

is unbounded, and which has a cross-cut [a cross-cut of K is a closed

segment xy with xy — x—y(ZK and with x(E.B(K), y^B(K)]. Then

S = B(K), and B(K) is a convex curve.

Proof. Since K is a component of the complement of a closed

connected set, it is known [3, pp. 108, 117] that K — xy is the sum of

two mutually exclusive open connected sets. One of these is bounded,

since 5 has the three point arcwise convexity property. We denote

this bounded component by Ki. We shall prove that Ki (the closure

of Ki) is a convex set. It follows from Lemma 1 immediately that Ki

lies entirely in one of the two open half-planes determined by the

line L(x, y) containing xy. Denote this open half-plane by R. More-

over, let L(x) be a closed ray with x as its end point. If L(x) Ki^O,

Lemma 1 implies L(x) K~i is an interval with end points z and p,

where pT^x, and xzCxp. If z^x, then the convex arc C(x, y, z) would

contain z in the interior of its convex hull, since K is unbounded, and

since L(x) Ki?±0. However, this contradicts the convexity of the

arc C(x, y, z), so that we must have L(x) B(K~i) —x-\-p when

L(x)-Ki^0. Similarly, L(y)-B(K~i) =y+s, if L(y)-K1^0. Now,

choose any pair of points aG-^i, v(E.K~i. If the line L(u, v) intersects

the interior of the segment xy, then the lines L(x, u), L(y, u), L(x, v),

L(y, v) determine a quadrilateral Q having its sides in K\, and having

uv as a diagonal. This, together with the connectness of B(K~i), im-

plies that QCZKi. Hence, uv<Z.Ki- Secondly, if L(u, v)-xy = 0, then

Lemma 1 implies that L(u, v) ■ Ki is connected. Hence, we have shown

that Ki is convex. Thus, Ki is also convex.

Next, we prove that SR = B(K1)—xy, where R is the open half-

plane defined above. First, suppose there exists a point q(E.SR — Ki

such that L(x, q)-Ki^0. Then, as proved above, L(x, q)-B(Ki)

= x+p, and p is between x and q on the line L(x, q). The line L(x, q)

determines an open half-plane i?i which does not contain y. Choose a

ray L(q) with end point q which is in Ru and which intersects Ki-Ri.

Since Ki is convex, and since q(£Ki, we have L(q)-B(K{) =u+v,

where u^S-Ri, vElSRi, and where u is between q and v on L(q).
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Since K is unbounded, a convex arc C(x, u, q) dS is contained in Ri.

Since L(q) Kit^O, and since the convex hull K* of C(x, u, q)+xq

contains K1R1, the point u is an interior point of K*, and this is

impossible since C(x, u, q) is a convex arc. Hence, we have a contra-

diction, and therefore no point q(£SR — Ki exists for which L(x, q)

■Ki^O. Similarly no point qQ.SR — Ki exists for which L(y, q)

■Ki^Q. Finally, if a point q^SR — Ki exists such that xq-K~i = 0,

yq-K~i = 0, then a convex arc C(x, y, q)C.S bounds a convex set con-

taining K~i in its interior. However, in this case, there would exist a

ray L(u) with u = x or u=y such that L(w)iTi^0, and such that

L(u) -5^L(m) B(Ki). This contradicts the previously proven fact

that when L(u) Kit^O, then L(u) S consists of two points of S. Thus

SR=B(K~i) — xy=C, a convex arc of 5. This is true for each cross-

cut of K.

Now, to complete the proof of Lemma 2, since K has a cross-cut,

the above implies that B(K)S has a nonempty convex arc C as a

subset. Let C* be the maximal closed convex curve of B(K) S which

contains C. We shall prove that C*=B(K) =S. To do this, first sup-

pose C* has two end points, x and y, and let R be the open half-plane

containing C* as defined above by means of L(x, y). Suppose a point

z£iS exists which is not in R. Since S- R = C*, a convex arc C(x, y, z)

CS containing x, y and z would contradict the fact that C* is maxi-

mal. Hence, in this case, S- R = C*=S. Similarly, if C* has one or no

end points, Lemma 1 and the maximality of C* imply that C* = S,

a convex curve. This completes the proof of Lemma 2.

Lemma 3. The complement of the set S has at most one bounded com-

ponent, and it is convex.

Proof. This is an immediate consequence of Lemma 1.

The following elementary lemma is known, and it is included for

sake of completeness.

Lemma 4. If an open set K has no cross-cuts, then it is the complement

of a convex set.

Proof. Let x and y be two points not in K. If xy-K^O, then it is

clear that K has a cross-cut which is a subinterval of xy. Hence K is

the complement of a convex set.

Proof of Theorem 1. Necessity. If a set S satisfies the conditions

of Lemma 2, then it satisfies Condition 2 of the theorem. If K satis-

fies the conditions of Lemma 4, then S satisfies either Conditions 1

or 3 of the theorem. If the complement of 5 is bounded, Lemma 3 im-

plies that S satisfies Condition 3. Thus Theorem 1 is a direct conse-

quence of Lemmas 1-4.
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Sufficiency. If S satisfies Condition 1 or 2 of Theorem 1, it obviously

satisfies the three point convexity property. Suppose 5 then satisfies

Condition 3, and let x, y, z be any three points in S, and let K be the

bounded component of the complement. Let H be. the convex hull of

K+x+ y+z. Since S+K is a convex set, the boundary B(H) is in S.

If xElB(H), y£_B(H), z(E.B(H) then clearly x, y, and z are contained

in a convex arc of S. If two of the points, x, y and z, say x and y, are

in B(H), and if the third is interior to H, then an arc of B(H) joining

x and y and a line segment in S joining z to x or z to y (one of these

must exist) again provide the desired convex arc. Thus 5 satisfies the

three point arcwise convexity property. This completes the proof of

Theorem 1.

Otto Haupt in a paper titled Tiber eine Kennzeichnung der Kugel

[2], studied sets S(ZEn such that for each triple of points in S there

exists a circular arc or a segment in 5 which contains the three points.

He calls such sets "Kreiskonvex." // S is a compact kreiskonvex set

containing interior points, Haupt proves that S is a sphere. It is inter-

esting to note that if in Haupt's theorem, we replace circular arcs

by convex arcs, and if each three collinear points of 5 are contained

in a segment of 5, then Theorem 1 implies that 5 is a convex set.

These last results are related to a result of G. Aumann [l]. "If each

plane section of a compact set S is a simply-connected continuum,

then 5 is convex."

E. G. Straus and F. A. Valentine [4] have investigated sets which

have the "three-point linear convexity property." Such a set S is

one for which each of its triple of collinear points is contained in a

segment of S. They have characterized the connected closed sets

SC-E2 having this property, and the results will be prepared for pos-

sible publication.
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