ON u-STABLE COMMUTATIVE POWER-ASSOCIATIVE ALGEBRAS

LOUIS A. KOKORIS

A commutative power-associative algebra A of characteristic >5 with an idempotent u may be written\(^1\) as the supplementary sum $A = A_u(1) + A_u(1/2) + A_u(0)$ where $A_u(\lambda)$ is the set of all x_λ in A with the property $x_\lambda u = \lambda x_\lambda$. The subspaces $A_u(1)$ and $A_u(0)$ are orthogonal subalgebras, $[A_u(1/2)]^2 \subseteq A_u(1) + A_u(0)$ and $A_u(\lambda)A_u(1/2) \subseteq A_u(1/2) + A_u(1 - \lambda)$ for $\lambda = 0, 1$. The algebra A is called u-stable if $A_u(\lambda)A_u(1/2) \subseteq A_u(1/2)$ and is called stable if it is u-stable for every idempotent element u of A.

A. A. Albert has shown in [3] that a simple commutative power-associative algebra A of degree >1 over its center F with characteristic prime to 30 is a Jordan algebra if and only if it is stable. Moreover, it is known that every simple algebra of degree >2 is a Jordan algebra. Thus there remains the problem of determining the nonstable simple algebras of degree two. There do exist simple algebras of characteristic $p > 5$ which are not Jordan algebras [3; 4]. Of course, these algebras are not stable, although they may be u-stable for some idempotent u. In this paper we shall obtain the following result.

THEOREM. Let A be a u-stable simple commutative power-associative algebra of degree 2 over its center F of characteristic zero. Then A is a Jordan algebra.

We shall use all of the results of [3] so we shall adopt the notations of that paper. In particular, all the results of the section giving properties of u-stable algebras will be used. For convenience let us state a few of the required results here.

In a simple u-stable algebra A there exists an element w in $A_u(1/2)$ such that $w^2 = 1$. Then $A_u(1) = uB$, $A_u(0) = vB$, and $A_u(1/2) = wB + G$ where B is the set of all elements b of $C = A_u(1) + A_u(0)$ with the property $(wb)w = b$ and G is the set of all quantities g of $A_u(1/2)$ with the property $wg = 0$. Since $e = (1/2)(1 + w)$ and $f = 1 - e$ are orthogonal idempotents, we may decompose A relative to e. It can be shown that $A_*(1) = eb$, $A_*(0) = fB$, and $A_*(1/2) = B(u - v) + G$. The set B is a subalgebra of C and the product of two elements in G is in B. Also,

Presented to the Society, December 29, 1954; received by the editors November 4, 1954.

\(^1\) The results of this paragraph are given in [1]. The numbers in brackets refer to the bibliography at the end of the paper.

702
the following multiplicative relationships exist for any \(a, b \) in \(B, g \) in \(G \).

1. \(w(bu) = w(bv) = \frac{1}{2} wb, \)
2. \((wa)b = w(ab), (wa)(wb) = ab, \)
3. \(g[b(u - v)] = wd, \)
4. \(gb = h - wc, \)
5. \((wb)g + w(gb) = -d(u - v), \)
6. \((wb)[a(u - v)] = k, \)

for \(h, k \) in \(G \), and \(c, d \) in \(B \). The quantity \(d \) in relation (5) is the \(d \) of (3).

The theorem can evidently be reduced to the case where \(F \) is algebraically closed. Then \(A_u(l) = uF + N_1 \) and \(A_u(0) = vF + N_0 \) where \(N_1 \) is the radical of \(A_u(\lambda) \) and \(N' = N_1 \oplus N_0 = N + N(u-v) \) is the radical of \(C \) where \(N \) is the radical of \(B \). Similarly, \(A_\varepsilon(1) = eF + M_1, A_\varepsilon(0) = fF + M_0, M_1 \) is the set of all elements \(ec \) where \(c \) is in \(N \) and we have the corresponding result for \(M_0 \).

The following important known lemma can now be stated.

Lemma 1. Let \(A \) be a commutative power-associative algebra of degree two over a field \(F \) of characteristic zero. Then \(A_\varepsilon(1/2)A_\varepsilon(1) \subseteq A_\varepsilon(1/2) + M_0 \) and \(A_\varepsilon(1/2)A_\varepsilon(0) \subseteq A_\varepsilon(1/2) + M_1 \). Note that the result of the lemma is not vacuous here since we are assuming \(u \)-stability only.

Consider the product \((eB)G \) which was used to obtain (4) and (5). By Lemma 1, \((eB)G \subseteq A_\varepsilon(1/2) + M_0 \) so that \((b+wb)g = a(u-v) + h + c - wc \) for \(a, b \) in \(B, g, h \) in \(G \), and \(c \) in \(N \) the radical of \(B \). Then \((wb)g = a(u-v) + c \) and it is shown in [3] that \(a = -d \) of relation (3). Also the quantity \(d \) in (3) and (5) is in \(N \). These results may be stated as follows.

Lemma 2. Let \(A \) be a \(u \)-stable commutative power-associative algebra over a field of characteristic zero. Then \(GB \subseteq G + wN, G[B(u-v)] \subseteq wN, w(GB) \subseteq N, (wB)G \subseteq N', \) and \(w(GB) + (wB)G \subseteq N(u-v) \).

It will also be necessary to have

Lemma 3. The product \(G\{ (wB)[B(u-v)] \} \subseteq N. \)

For proof substitute \(x = g, y = a, z = b(u-v) \) into the multilinear

2 By Theorem 2 of [2].
3 See Theorem 6 of [5].
4 [2, Lemma 10].
identity obtained from the associativity of fourth powers.\footnote{The identity is stated in all of our references.} Relation (1) implies \(wz = w(az) = 0 \) and we have \(wg = 0 \) by definition of \(G \). Thus

\[
4(wa)(gz) = w[(ga)z + (gz)a + g(az)] + g[(wa)z] + a[(gz)w]
+ z[(wa)g + w(ga)].
\]

By (3) and (2), \((wa)(gz)\) is in \((wB)(wN) \subseteq N\). The quantity \(ga \) is in \(G+wN \) by (4); hence \((ga)z \) is in \(G[B(u-v)]+(wN)[B(u-v)] \). Consequently, (3) and (6) imply \(w[(ga)z] \) in \(N \). Since \((gz)a \) lies in \(\{G[B(u-v)]\}B \subseteq (wN)B \subseteq wN \), \(w[(gz)a] \) is in \(N \). Also \(w[g(az)] \) is in \(w \cdot G[B(u-v)] \subseteq w(wN) = N \). The product \(a[(gz)w] \) is in \(N \) and \(z[(wa)g + w(gz)] \) is contained in \([B(u-v)] \cdot [N(u-v)] \subseteq N \). This completes the proof of Lemma 3.

The proofs of Lemmas 15 and 17 of [3] which state that \([A_u(1/2) \cdot N'] \subseteq N'A_u(1/2) \) and \([A_u(1/2)N']A_u(1/2) \subseteq N' \) follow without change. We also have without change that \(N' + A_u(1/2)N' \) is an ideal of \(A \). Since \(A \) is simple, this ideal must be zero because it does not contain the identity element. Thus \(A = uF + vF + A_u(1/2) \), which is a Jordan algebra. A Jordan algebra is stable so we have as a corollary that a simple commutative power-associative algebra of degree 2 and characteristic 0 is stable if and only if it is \(u \)-stable.

\textbf{Bibliography}

\textit{University of Washington}