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1. Introduction. The persistence, under diverse hypotheses, of a

reciprocal relationship between a point function and its Fourier trans-

form suggests the possibility that something of the kind may also be

true for functions of intervals. Perhaps the most symmetric form of

the Fourier integral theorem is that due to Plancherel, as follows:

IffEL2(0, <*>), then its Fourier cosine transform

g(x) = lim. (2/tt)1'2 f  f(t) cos xtdt
a—>°© J 0

exists as a limit in mean square and belongs to L2(0,  <*>). Moreover,

f(x) = lim. (2/x)1'2 f   g(t) cos xtdt,
a-*« J o

and

C{f(x)\2dx =  C{g(x)\2dx.
Jo J 0

If we wish to extend this theorem to functions of intervals, we need

a suitable definition of Fourier cosine transform and a hypothesis

analogous to/£EL2(0, °° .

Consider the special case u(I) =fif(t)dt, where fEL2 and the

integral is a Lebesgue integral. Then it is known [2, §450, p. 610]

that

rh{u(I)}2 „    Ur      */ r»
I   JTrT-= lhn  £-nn- I    {/«}2^

J a \  I\ AS-O/Gs \ I\ J a

where | /| denotes the length of the interval /, AS denotes the length

of the longest interval I in the subdivision 5 of (a, b) into nonover-

lapping intervals, and the integral on the left is a Burkill integral [l ].

Guided by this, we make the following definition:

Definition 1. A function u defined on subintervals of (0, «>) is said

to belong to the class B2 if u is integrable on every finite range and the
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upper integral1

/•*-   {u(I)}2       .       n*-   {u(I)}1

J„ |/|       = A™   J0 \l\

is finite.
Given a point function / and a function u of intervals, consider the

sum 22^ f(lk)u(Ik) taken over a subdivision 5 of a finite interval 70

into intervals Ik, and where tk is any point of Ik. If, as AS—>0, this

sum tends to a limit, we may denote the limit by JiJ(t)u(I). Using

this concept, we may now define Fourier transforms of functions of

intervals.

Definition 2. The Fourier cosine transform of a function uEB2 is

the function g(x) =l.i.m.a^.0O (2/tt)1I2JIcos xtu(I), where the limit is a

limit in mean square.

If we proceed heuristically, we could follow through an argument

analogous to that given by Titchmarsh [3, pp. 436-438], and arrive

at the following result:

Theorem. If uEB2, then its Fourier cosine transform g(x) exists

and belongs to L2: in fact Jo {g(x)} 2dxSj*a {u(I)} 2/| 7]. If h is the

(ordinary) Fourier cosine transform of g, then Jlu(I) =J%h(t)dl and

h(x) =u'(x) p.p., where u'(x) is the derivative of w(7).

Most of the foregoing is due to Dr. J. M. Whittaker, to whom I am

indebted for suggesting this problem. The theorem stated is, in fact,

true, but to justify the argument by which it was obtained would

require the extension to Burkill integrals of a number of standard

results on Lebesgue integrals. Because of the nonabsolute conver-

gence of the Burkill integral and the lack of convenient criteria for

the existence of integrals, these extensions have not been readily

forthcoming, and we have preferred to proceed differently.

The inequality

/. /**»  U(7)}2{g(x)}2dxS\       -Vfr-

can fail to be an equality. We shall see, however, that we always have

Jo  *'<*»** "J,   -777-'
where U(Ia)=fIou(I).

1 This departure from the usual notation for upper integrals is for typographical

reasons.
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2. Existence of the transform.

2.1. Suppose  that f(t)  is  continuous,  that /*Jm|<°°,  and  that

22k f(tk)u(Ik) converges, as AS—>0, for some definite choice of tk for

each Ik.  Then it converges for every choice of tk, i.e. the transform

JiJ(i)u(I) exists.
Here, and throughout this section, 70 denotes a finite subinterval

of (0, co) and 5 a subdivision of Jo into intervals Ik, the length of

the longest of which is AS.

Let / be the limit of 22* f(tk)u(Ik). Then given e>0, we can find

S>0 such that for any subdivision S for which AS ̂ 5,

|   22f(tk)u(h)-l\   ge/2,

\f(t)-f(t')\   ^e/(2+2j*|M|) for|/-/'|   £8.

Hence if /*' is any point of Ik,

| 22f(ti)u(Ik) - 22f(h)u(Ik) |   =§ e/2,
k k

and hence | 22^ f(tk )u(Ik) —1\ ^e, which proves our assertion.

2.2. If f(I)—>f(t) as I-^t, f(t) is continuous and fi*\ u\ < =o, then if
fiJ(I)u(I) exists so does fij(t)u(l), and the two are equal.

By/(/)—>/(/) as I—>t, we mean that for each t, given e>0, we can

find 5>0 such that \f(I)-f(t)\ ^e whenever tEI and \l\ g5. The
function/(/)—/(/), where t is the mid-point of I, is therefore a con-

tinuous function of intervals. By the uniform continuity theorem,

given e>0, we can find 8>0 such that \f(I) — /(0|=« provided

|/| ^5. Hence, for small AS,

[ 22f(h)u(Ik) - 22f(tk)u(Ik) | £ « E I u(Ik) I
k k k

s.(.+/j4
and the rest follows from 2.1.

2.3. Suppose that u is absolutely continuous and integrable, and that

f(t) is continuous. Then fi„f(t)u(I) exists: in fact

f mud) = r /(/)«(/) = r f(t)w(t)dt,

wheref(I)-\l\ =fif(t)dt.



i95J] A FOURIER INTEGRAL THEOREM 819

For since/(7) is bounded, f(I)u(I) is absolutely continuous [l, p.

287], Moreover, since/(7)—>/(£) as 7—H and w is differentiable p.p.

[l, Theorem 7.2],/(7)w(7) is differentiable p.p., and its derivative is

f(t)u'(t). Hencef(T)u(I) is integrable [l, Theorem 7.6] and fiJ(I)u(I)
=JiJ(t)u'(t)dt. Finally, //*|w| < oo since w is absolutely continuous

[l, Theorem 3.6], so that the rest follows from 2.2.

3. Functions of class B2.

3.1. If uEB2, then u is absolutely continuous on any finite interval.

For, using Schwarz's inequality, if  2* 1-^*1  's sufficiently small,

vi f m I < . v {u{h)^ v I j \\w
2- I «u») 1 = 1^ ~~nrj— 2-,\Ik\)

3.2. IfuEB2and U(I0)=JIou(I), then UEB2. Moreover, u'(x)EL2
and

fVw,,„=ri^lisf*"i^l!.
Jo J o |7| «/o |7|

Since U is absolutely continuous and additive, we have [l, Theo-

rems 2.1 and 7.6, Corollary] U(Ik)=fitU'(x)dx for any 7*. Hence,
for any subdivision 5 of 70,

. . if U'(x)dx\
^  {U(Ik)}2     ^  \Jrk /

^   ' *-* I  T   I        ~   *-" I   T   I
* |1k | * |lk |

But, by Schwarz's inequality [l, p. 282],

{u(n)Y_ \JIku(I)f    ^ r* {«(/)}' J/J7' _ r* HdY
\I*\ \I>\ ~Ju     \I\        \h\        Jik     \I\

and hence the sum on the left of (2) does not exceed

(3) J,. "T^'

since upper integrals decrease on subdivision. It follows [2, §450]

that as AS—»0 the sums in (2) must converge to //„{ U'(x)]2dx and

that this integral does not exceed the upper integral (3). Thus
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r   {U(I)}2

exists and is bounded for 70C(0, oo), so that UEB2. Since, more-

over, u'(x) = U'(x) p.p., we have u'(x)EL2 and

fK{u'(x)}2dx= f {m]i z r r*ii<£ii!< rw iuw>2
Jo «2 o        |7| J o    J i      |7| Jo |7|

4. Proof of the theorem. By 3.1 and 2.3, the integral f% cos xtu(I)

exists and is equal to /Jj cos xtu'(t)dt. Hence the Fourier cosine trans-

form g(x) of the function u{I) is the same as the transform of u'(x),

which exists, by 3.2 and Plancherel's theorem. Thus gEL2, hEL2 and

h(x) =u'(x) p.p. Also, using 3.2,

f"{g(x)}2dx = f"{u'(x)\2dx^f*a -^fyp'

and, since u is absolutely continuous,

/» X rt  X /%  I

u(I) =  I    u'(t)dt =  j    h(t)dt.
0 •'0 v 0

5. Example. Define a point function f(x) as follows: if O^xgl,

then / coincides with the continuous, monotone increasing but non-

absolutely continuous function defined by Titchmarsh [3, 11.72,

p. 366]; and if x>l, we define /(x) = l. Then /(0)=0, /(x) = 1 for

x^l and/'(x) =0 p.p. For I=(a, b), define

u(T) = {(f(b)-f(a))\l\ j1'2.

Then u is absolutely continuous; for, by Schwarz's inequality,

El «('*)! ̂ (22(f(h)-f(ak))22\h\yn^ {eI^iV'8-
* \    k k J \    k I

Moreover, u is differentiable p.p. and its derivative is

,.      f/ffl - f(a)\ "2      ft,,.Un      n
hm j-^—-V      = {/'(x)}1'2 = 0 p.p.

Hence u is integrable, and since {m(7)}2/|l\ =f(b)—f(a) is additive

Jo I 2 I

for Xt l,and
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Jo |/|

Hence uEB2. However

U(I) =   f u(I) =  f   u'(x)dx = 0,

{mi))2   n    .   r {^)}2   n^i   rw Nw}2
—i—j— = 0,    and      I      —:—j— = 0 < 1 =  I      —,—:— •

|7| J„ |/| Jo       \I \

6. Special cases. If we take u(T) = Jif(t)dt, where f EL2, then the
theorem reduces to PlancherePs theorem, equality holding in (1) since

u is additive and hence U(I) =u(I). Similarly, a suitable choice of u

[l, p. 281, no. 4] would give a version involving Riemann-Stieltjes

instead of Lebesgue integrals.

A rather unexpected result emerges, however, if we make the fol-

lowing choice for u [l, p. 280, no. 2]: for any interval I=(y, y'), we

define u(I)=ymE, where mE is the measure of the set E={x: y

^f(x) <y'|,/ being a function defined and integrable on some inter-

val (a, b). We have

Cu(d = r f(X)dx,   r"«(/) = r f+(x)dx,
J —oo J a Jo J a

where /+(x) is f(x) if f(x) > 0 and zero otherwise; and

f\(I) =  f [f+(X)]xdx,
Jo J a

where [y]x is y if y<X and zero otherwise.

In general, we shall not have uEB2: for example, if /(x) = 1 for all

x, w(7) =0 if 1€£7 and w(7) =y(b — a) if 1£7= (y, y'), so that w is not

continuous. We see from this that uEB2 implies that/ is constant

on no set of positive measure. Let us suppose for simplicity that/ is

strictly monotone. Then E is an interval (x, x'), and

/cos£/w(7) = lim   2Z cos £?*• y*(**+i — xk)
0 AS-.0     k

=  f   [/+(*)]* cos £/(*)<**,
J a

the latter being a Riemann integral. Thus the Fourier cosine trans-

form of w is here
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g(x) = (2/t)*'s f f+(t) cos xf(t)dt.
J a

If /j is the ordinary transform of g, we have

A(0<fc = (2/x)1'2 I    x-1sinxZ-g(x)dx=   I     w(7)

0 h

= J     [/+(0k^,

a formula which may also be verified directly.
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