
RIGHT ANNIHILATOR ALGEBRAS

m. f. smiley

1. Introduction. The purpose of this note is to extend to arbitrary

Banach spaces the characterization given by Bonsall and Goldie

[l; 2] of the Banach algebra F(X) of all approximately finite-valued

operators on a reflexive Banach space X. This extension was sug-

gested by one of the results of Bonsall and Goldie [2, Theorem 15].

The requirements on a topologically simple Banach algebra A in

order that it be isometric and isomorphic to some F(X) are that every

left ideal which is not dense in A has a nonzero right annihilator and

a certain restriction on the spectral radius of some nonzero multiple

of every element of A. (See Condition (3).) Our arguments are merely

refinements and simplifications of those of Bonsall and Goldie. Al-

though we have made some effort to make our one-handed presenta-

tion fairly self-contained, the reader is assumed to have a knowledge

of the arguments employed by Bonsall and Goldie.

We devote §1 to the reduction of our problem (in a slightly more

general setting) to the topologically simple case. In §2 we offer refine-

ments of some of the arguments of Bonsall and Goldie which lead to

the desired characterization.

As to notation, we let Er(Ei) denote, for a subset of a ring A, all

those x in A for which Ex = 0 (xE = 0). If F is also a subset of A,
EF denotes the totality of products xy with x in E and y in F, while

E-F denotes the additive subgroup of A generated by EF. When A

is a topological ring, E~ denotes the closure of E. We call E modular

in case .4(1 —f)CZE for some/ in A. None of this notation or termin-

ology is new.

2. Semi-simple right annihilator rings. We shall call a topological

ring A a right annihilator ring in case

(1) If 7 is a left ideal of A and I~^A, then 7r?*0,

(2) Each modular maximal left ideal of A is closed.

Observe that it is a consequence of (1) and (2) that 7r5^0 for each

proper modular left ideal 7 of A because we may imbed 7 in a modular

maximal left ideal and apply (2) and (1). We shall assume throughout

this section that A is semi-simple.

If a in A is not left quasi-regular (l.q.r.), then .4(1 — a) is a proper

modular left ideal and hence (.4(1 — a))T= [l— a]rr*0, or ab = b?±0

for some b in A. Now let Mbea modular maximal left ideal of A so
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that Mr5^0. Not every element in Mr is l.q.r., because if every ele-

ment of MrA is l.q.r. so is every element of AMT [4, p. 154], MT is

contained in the radical of A, Mr = 0, a contradiction. Let e in Mr

not be l.q.r. so that eb = b^0 for some b in A. Then e is not in

M+A(l— e), for e=m+x — xe with m in M and x in A yields eb = 0

= b, a contradiction. Since M is maximal, A(l—e)CM, .4(1— e)e = 0,

e=e2 is idempotent in Mr. Then MC [a]i = ^4(l —e) gives If = .4(1 — e),

Mr = eA. Since Af is maximal, Ae is minimal and so is eA [5, p. 13].

Because (M^iDM and is maximal [5, p. 13], we obtain (Mr)i = M.

Thus one of the dual rules of Kaplansky [4] holds for modular

maximal left ideals of A. It is not known whether this rule holds for

all closed left ideals of A (cf. [2]).

If / is a left ideal of A and J~9^A, then J, contains a minimal right

ideal. For, Jr contains an element a which is not l.q.r. and we have

ab = b?^0 for some b in A. Then, as in the previous paragraph, a is

not in J+A(l —a) and there is a modular maximal left ideal M such

that MZ)J+A(1 —a). Then Mr is a minimal right ideal and MrCJr-

We apply this to the join / of all the minimal left ideals of A and ob-

tain J~ = A, for otherwise Jr would contain a minimal right ideal

whose idempotent generator would have to be in J, a contradiction.

If / is a minimal left ideal of A, then the closure of the two-sided

ideal of A generated by /, {/}, is a minimal closed two-sided ideal of

A, and every minimal closed two-sided ideal B of A has this form. For,

if Bm^O, then ICB, {/} =B, while BC\I = 0 for every minimal left

ideal I of A yields bJ = 0, bA=0, b = 0 for every b in B, a contradic-

tion. Thus A is the closure of the join of its minimal closed two-sided

ideals, and this join is clearly direct.

Now let B be one of the minimal closed two-sided ideals of A and

let J be a left ideal of B such that K = I~^B. Then K is a left ideal of

A, and so is L = K+Bi. (This proves that B is topologically simple.)

If L~ = A, and b, b'CB, then every neighborhood of b contains k+c

with k in K and c in Bt. If IF is a neighborhood of b'b, then b'ZCW

for some neighborhood Z of b and hence b'kCW, b'bCK~ = K. But

then (BB)~CK, BCK, a contradiction. Thus L-^A and Lr con-

tains a minimal right ideal eA. He is not in B, then Be =0, eCBr = Bi

(because BrBCBr\Br = 0, BrCBi, and dually), e£L, e=0, a contra-

diction. Hence eCB and Le = Ke = 0, Krr\B^0. Finally, let N be a

modular maximal left ideal of B so that B(l —f) CN for some f in B

and hence/not in N. Then/is not in N+A(l—f) since f = n+a — of

with a in A and n in N yields f2 =fn +fa —faf in N, which with/—/2

in N gives / in N, a contradiction. Thus there is a modular maximal

left ideal M of A such that MZ)N+A(l—f) and hence/ is not in
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M=M~. Suppose that /£#-, then f2£AN-CAM~ = AMCM,
f— f2(E.M, /£M, a contradiction. Since N is maximal in B and 5 is

closed, it follows that N is closed.

When we recall that every ideal B of a semisimple ring 4 is also

semisimple (Direct proof: If &£5 and be is r.q.r. for every c in 5,

then baba is r.q.r. for every a in 4 and thus ba is r.q.r. for every a in

.4, 6 = 0), we may summarize the results of this section in a theorem.

Theorem 1. 7/ .4 is a semi-simple topological ring which satisfies

conditions (1) and (2), then A is the closure of the direct join of its

minimal closed two-sided ideals, each of which is a semi-simple and

topologically simple ring which satisfies (1) and (2).

3. Topologically simple right annihilator algebras. We now impose,

in addition to the assumptions of §1, the requirements that 4 is a

Banach algebra and that 4 is topologically simple. (Of course, condi-

tion (2) is now redundant.) If eA is a minimal right ideal of A, with

e idempotent, and xRa = xa for x in eA, then a—>Ra is a continuous

isomorphism of A onto the ring RA, provided we employ the uniform

topology for operators in the Banach space X = eA. Bonsall and

Goldie show, without using the dual of condition (1), that Ra in-

cludes all finite-valued operators on X [2, Theorem 10]. It does not

seem to be known whether Ra is necessarily closed. However,

||a||i = ||i?a|| yields a second norm for A such that ||a||i^||a|| for every

a in A. In order to secure a faithful representation of 4, we impose the

following generalization of the requirement of Bonsall [l, Equation

(2.1)].
(3) If a£.4 with ||a|| =1 and 0<e<l, then for some a* in A with

||a*|| =1, we have ||(aa*)"|| =1(1 — «)" for every positive integer n.

That (3) holds in F(X) may be seen by a trivial modification of the

proof of Theorem 1 of [l ]. It is also clear that if (3) holds for a family

of Banach algebras, it also holds in the completion of their direct join

(=B(«>) sum). When A is not topologically simple, the condition (3)

for A implies that each minimal closed two-sided ideal B of A satisfies

condition (3). For consider &£5 with ||&| =1 and 0<e<l. With

5 = l-(l-e)1/2, we obtain a* in A with |o*J|=l and ||(&a^a#)"||

£(l-e)n for every n. We note that 1 ̂ ||a%z#|[ ^\\ba*ba*\\ = 1 -e>0,

and we may set ¥ =a*ba^/\\a*ba*\\ in B to find that ||(W)BH ^(1 — «)",

as desired. (One should observe that an analogous argument applies

in the B* algebras of Bonsall.)

Let us return to the topologically simple case and use condition

(3). Following Bonsall, we let Ai be the completion of A relative to

||a||i and prove that the spectral radius, r(a) of a in A is equal to the
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spectral radius, ri(a), of a in Ai. It is sufficient to observe that it is

impossible that an element b of A be q.r. in Ai and not q.r. in A.

For, if b is l.q.r. in A, it is also r.q.r. in A by the uniqueness of the

quasi-inverse in Ai. But when b is not l.q.r., bc = c^0 for some c in A

and b cannot be q.r. in .4i. Next we prove that ||a|| =|[a||i for every

a in A. For suppose that ||a||i = l —5 with ||a|| =1 and 0<S<1, then

with e = 8/2, we obtain a* in A with ||a#|| =1 and ||(aa*)B|[ ^(1— e)n.

Then we have (l-8)\\a*\\i^\\aat\\i^r1(aat)=r(aat)^ lim H^a*)"!!1/"

^1 — e. Since 1 — e>l —8, this yields ||a#||i>||a>?|| =1, a contradiction.

Thus |[a||i = [|a|| for every a in A and the mapping a—*Ra is an iso-

metric isomorphism. We note that (3) implies the semi-simplicity of

A (cf. [l, Theorem 4]) and conclude with the promised character-

ization.

Theorem 2. If a Banach algebra A satisfies the conditions (1) and

(3), then A is the completion of the direct join of its minimal closed two-

sided ideals, each of which is a Banach algebra which satisfies (1) and

(3) and is isomorphic and isometric to F(X) for some Banach space X.

Conversely, F(X) is a topologically simple Banach algebra which satis-

fies (1) and (3).
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