ON A CLASS OF PATHOLOGICAL FUNCTIONS

SEYMOUR GINSBURG

We study the problem of approximating a function from a separable metric space D to a separable metric space Z by functions g from D to Z which have the property there is no set E of power 2^{\aleph_0} such that g is a homeomorphism of E onto g(E). Theorem 1 asserts that any one to one function may be approximated by such a function. Numerous continuous functions may be approximated by such functions which, moreover, are periodic of preassigned period n (Theorem 4).

All functions mentioned are from a separable metric space into a separable metric space.

DEFINITION. A one to one function f of D into Z is a dishomeomorphism if D contains no subset E, of power 2^{\aleph_0} , such that f is a homeomorphism of E onto f(E).

The proof of the existence of a dishomeomorphism was given for the first time in [2].

By R is meant the set of real numbers, ordered in the natural manner. By a *linear* set is meant a subset of R.

DEFINITION. A one to one function f of a linear set E into R is a dissimilarity transformation (on E) if E contains no subset D, of power 2^{\aleph_0} , such that f is a similarity transformation of D onto f(D).

From the definitions there readily follows

LEMMA 1. If E is of power $< 2^{\aleph_0}$, then each one to one function f of E into Z is a dishomeomorphism. If E and f(E) are linear sets, then f is also a dissimilarity transformation.

It is easily seen that a necessary and sufficient condition that each one to one function f, of E into E, for which the power of the set $\{x \mid f(x) = x, x \in E\}$ is $\{x \mid f(x) = x, x \in E\}$ be a dissimilarity transformation, is that E have property A.

The following known result will be used [1]:

LAVRENTIEFF'S THEOREM. Let D be a subset of E. If f is a homeomorphism of D into a complete space C, then f can be extended to be a homeomorphism of a G_{δ} set B, containing D, into C.

Let f be a function from E into D. We shall say that a function g

Received by the editors December 8, 1954.

¹ A set E has property A if E is a linear set of power $2^{\aleph 0}$ with the property that no two disjoint subsets of E, of power $2^{\aleph 0}$ each, are similar.

of E into D ϵ -approximates f if $d(f(x), g(x)) < \epsilon$ for each x in E, d being the metric on D.

LEMMA 2. Let f be a mapping of D into a complete space Z such that for each element y in E = f(D), $f^{-1}(y)$ is a denumerable set. If each element of E is a c-condensation point of E, then for each $\epsilon > 0$ there exists a dishomeomorphism g of D onto E which ϵ -approximates f.

PROOF. For each element y in E let S(y) denote the sphere in E, of radius $\epsilon/2$ and center y. Since each element of S(y) is a c-condensation point of E, the power of S(y) is 2^{\aleph_0} . Furthermore, since $f^{-1}(y)$ is denumerable, $f^{-1}[S(y)]$ is of power 2^{\aleph_0} .

Denote by F the set of all those couples (f, B), where B is a G_{δ} of D of power 2^{\aleph_0} , and f is a homeomorphism of B into Z. Since D and Z are separable and of power 2^{\aleph_0} each, the power of the set F is 2^{\aleph_0} . Well order the elements of D, E, and F into the sequences $\{u_{\xi}\}$, $\xi < \theta$, and $\{(f_{\xi}, B_{\xi})\}$, $\xi < \theta$ respectively. Denote by w_0 the element u_0 . Let x_0 be the first element in the set $S(f(w_0)) - \{f_0(w_0)\}$. Define $g(u_0)$ to be x_0 . Let x_0 be the first element in the set $E - \{x_0\}$ and y_0 the first element in $f^{-1}(S(z_0)) - \{w_0, f_0^{-1}(z_0)\}$. Define $g(y_0)$ to be z_0 . Note that $d(f(w_0), g(w_0)) < \epsilon$ and $d(f(y_0), g(y_0)) < \epsilon$. Continuing by induction suppose that the elements w_{ξ} , $x_{\xi} = g(w_{\xi})$, y_{ξ} , and $z_{\xi} = g(y_{\xi})$ have been defined for each $\xi < \alpha$. Let w_{α} be the first element in the set

$$(1) D - \{w_{\xi}, y_{\xi} | \xi < \alpha\}$$

and x_{α} the first element in the set

$$(2) S(f(w_{\alpha})) - \left[\left\{x_{\xi}, z_{\xi} \middle| \xi < \alpha\right\} \cup \left\{f_{\xi}(w_{\alpha}) \middle| \xi \leq \alpha\right\}\right].$$

Define $g(w_{\alpha})$ to be x_{α} . Let z_{α} be the first element in the set

$$(3) E-[\{x_{\xi},z_{\xi} | \xi < \alpha\} \cup \{x_{\alpha}\}].$$

Let y_{α} be the first element in

$$(4) \quad f^{-1}(S(z_{\alpha})) - \left[\left\{w_{\xi}, y_{\xi} \mid \xi < \alpha\right\} \cup \left\{f_{\xi}^{-1}(z_{\alpha}) \mid \xi \leq \alpha\right\} \cup \left\{w_{\alpha}\right\}\right].$$

Since the set in the brackets is of power $<2^{\aleph_0}$, y_α exists. Define $g(y_\alpha)$ to be z_α . Note that $d(f(w_\alpha), g(w_\alpha)) < \epsilon$ and $d(f(y_\alpha), g(y_\alpha)) < \epsilon$.

Clearly the function g is one to one. From (2) and (4) it follows

² If f maps A into B, then by $f^{-1}(C)$, C being a subset of B, is meant $\{x \mid x \in A, f(x) \in C\}$.

 $^{^{3}}$ p is a c-condensation point of E if each open set containing p meets E in $2^{\aleph 0}$ elements.

⁴ By θ is meant the smallest ordinal number whose power is $2\aleph^0$.

that for $\alpha \ge \xi$, $g(w_{\alpha}) \ne f_{\xi}(w_{\alpha})$ and $g(y_{\alpha}) \ne f_{\xi}(y_{\alpha})$. Hence

(5) the set
$$\{x \mid f_{\xi}(x) = g(x), x \in B_{\xi}\}$$
 is of power < 2 ^{No}.

From (1) for each element u_{ν} of D, u_{ν} is in the set $\{w_{\xi}, y_{\xi} | \xi \leq \nu\}$. From (3) for each element v_{ν} of E, v_{ν} is in the set $\{x_{\xi}, z_{\xi} | \xi \leq \nu\}$. Consequently g is a one to one function of D onto E which ϵ -approximates f.

We now show that g is a dishomeomorphism. For suppose the contrary. Then there exists a subset H, of power 2^{\aleph_0} , of D such that g is a dishomeomorphism of H onto g(H). Let h be the function which is defined by h(x) = g(x) for x in H. By Lavrentieff's Theorem, h may be extended to be a homeomorphism k of a G_k set M, containing H, into E. This however contradicts (5) since k and g coincide on a set of power 2^{\aleph_0} . Therefore g must be a dishomeomorphism. Q.E.D.

Suppose that f is a one to one mapping of Y into Z. Let E be the set of c-condensation points of f(Y) which are in f(Y) and let G = f(Y) - E. As is well known the power of G is $<2^{\aleph_0}$, and each element of E is a c-condensation point of E. Let $D = f^{-1}(E)$. By Lemma 2, for $\epsilon > 0$ there exists a dishomeomorphism g of D onto E which ϵ -approximates f. For each element x in $f^{-1}(G) = Y - D$, let g(x) = f(x). Now the following is easily seen.

LEMMA 3. Let D be the union of two disjoint sets F and G. A necessary and sufficient condition that a one to one function f of D into E be a dishomeomorphism is that f be a dishomeomorphism of each of the sets F and G.

In view of Lemma 3 and the preceding discussion we obtain

THEOREM 1. For each one to one mapping f of D into E, and for each $\epsilon > 0$, there exists a dishomeomorphism g of D onto f(D) which ϵ -approximates f.

COROLLARY 1. Each one to one function f of D into E is the limit of a uniformly convergent sequence of dishomeomorphisms of D onto f(D).

COROLLARY 2. Let D be a subset of E and g a dishomeomorphism of D onto the subset F of G. Then g can be extended to be a dishomeomorphism of E onto G if and only if the two sets E-D and G-g(D) are of the same power.

Suppose that f is a similarity transformation of a linear set E, of power 2^{\aleph_0} , into R. The set D of points of discontinuity of f are enumerable. Thus f is a continuous similarity transformation of the set E-D, of power 2^{\aleph_0} , onto f(E-D)=C. The function f^{-1} is a similarity trans-

formation defined on C. Let B be the denumerable set of points of discontinuity of f^{-1} on C. Then f^{-1} is a continuous similarity transformation of the set C-B, of power 2^{\aleph_0} , onto $f^{-1}(C-B)=A$. Consequently f is both a similarity transformation and a homeomorphism of A onto f(A). From this it follows that if f is a dishomeomorphism of a linear set, then f is a dissimilarity transformation. Hence

COROLLARY 3. For each one to one mapping of a linear set E into R, and for each $\epsilon > 0$, there exists a function g, which is both a dishomeomorphism and a dissimilarity transformation, of E onto f(E). Furthermore, g ϵ -approximates f.

If, in Lemma 3 and Corollary 2, all sets are linear, then "dishomeomorphism" may be replaced by "dissimilarity transformation." By a procedure quite analogous to Theorem 1 the following result may be proved.

THEOREM 2. Let f be a mapping of D into itself such that for each element y in E = f(D), $f^{-1}(y)$ is a denumerable set. If each element of E is a c-condensation point of E, then for each $\epsilon > 0$ there exists a dishomeomorphism g of D onto E which ϵ -approximates f and also has the property that there is no element x in D and no positive integer n such that $f^n(x) = x$.

COROLLARY. Let f be a mapping of D into itself such that for each element y in E = f(D), $f^{-1}(y)$ is a denumerable set. Suppose that there is no element x in D and positive integer n such that $f^n(x) = x$. Then there exists a dishomeomorphism g of D onto E which ϵ -approximates f and also has the property that there is no element x in D and no positive integer n such that $f^n(x) = x$.

A function f of A into A which is not the identity is said to be of period two if $f^2(x) = x$ for every element x in A. f is said to be strongly of period n > 0 if $f^n(x) = x$ for each x in D, and for no 0 < j < n does there exist an x so that $f^j(x) = x$.

THEOREM 3. Let f be a one to one function of a nondenumerable space A into itself with the following property: For no odd integer > 5 is there an element x in A such that $f^n(x) = x$ and $f^i(x) \neq x$ for each $j = 1, 2, \cdots, n-1$. Let ϵ be any positive number which has the property that $d(x, f^2(x)) < \epsilon/2$ for each x in A. Then there exists a dishomeomorphism g of A onto A which is of period two and ϵ -approximates f.

PROOF. Since A is a separable metric space there exists a denumer-

⁵ For each function f, $f^0(x) = x$ and $f^{n+1}(x) = f[f^n(x)]$. Let $f^{-n}(x) = (f^n)^{-1}(x)$.

able set of spheres $\{S_n | n < \omega\}$, of diameter $< \epsilon/2$, which form a basis for the topology of A. Denote by K_n^m the set

$$K_n^m = \{ x \mid x \in S_m, f(x) \in S_n \}.$$

Evidently $A = \bigcup_{m,n} K_n^m$. Relabel the K_n^m as B_i , $i < \omega$, i.e., $\{K_n^m | m, n < \omega\} = \{B_i | i < \omega\}$. Let $C_i = f(B_i)$. Let P_i and Q_i be the set of c-condensation points of B_i and C_i which are in B_i and C_i respectively. Let

$$U = \bigcup_{i} [(B_i - P_i) \cup (C_i - Q_i)]$$

and

$$V = \{f^{r}(x) \mid x \in U, r < \omega\} \cup \{f^{-r}(x) \mid x \in U, r < \omega\}.$$

As is easily seen, the power of V is $< 2^{\aleph_0}$. Let $D_i = B_i - V$ and $E_i = C_i - V$. Thus $f(D_i) = E_i$. Notice that if x is in D_i , then each element of D_i is a c-condensation point of D_i (thus, if D_i is nonempty, then D_i is of power 2^{\aleph_0}), and each element of E_i is a c-condensation point of E_i .

We now define g on V. Let y be any element of V and consider the sequence

$$(1) \cdots f^{-n}(y), \cdots, f^{-1}(y), y, f(y), \cdots, f^{m}(y), \cdots$$

If for some n the element $f^{-1}[f^{-n}(y)]$ does not exist, then without loss of generality we may assume that n=0, i.e., $f^{-1}(y)$ does not exist. In this case (1) becomes

$$(2) y, f(y), \cdots, f^m(y), \cdots.$$

By assumption there is no odd integer n>5 and no element x in A such that $f^n(x)=x$ and $f^j(x)\neq x$ for each $j=1,\ 2,\ \cdots,\ n-1$. If the elements in the sequence (1) or (2) are not all distinct, then there are 1, 3, 5, or an even number of distinct elements in (1) or (2). Let J_y be the set of elements in (1) or (2). For any two elements y and z in V either $J_y=J_z$ or else J_y and J_z are distinct. If the power of J_y is either infinite or even, let $g\left[f^{2n}(y)\right]=f^{2n+1}(y)$ and $g\left[f^{2n+1}(y)\right]=f^{2n}(y)$ for $n\geq 0$, and let $g\left[f^{-2n}(y)\right]=f^{1-2n}(y)$ and $g\left[f^{1-2n}(y)\right]=f^{-2n}(y)$ for n>0. Suppose that J_y contains just three elements, y, f(y), and $f^2(y)$, i.e., $f^3(y)=y$. Let g(y)=y, $g\left[f(y)\right]=f^2(y)$, and $g\left[f^2(y)\right]=f(y)$. On calculating d(f(x),g(x)) for x in J_y we have

$$d(f[f(y)], g[f(y)]) = 0 \text{ and } d(f[f^2(y)], g[f^2(y)]) = d(f^3(y), f(y)) < \epsilon/2.$$
Now $d(y, f^2(y)) < \epsilon/2$ and $d(f^2(y), f(y)) = d(f^2(y), f^4(y)) < \epsilon/2$. Thus
$$d[f(y), g(y)] = d(f(y), y) \le d(y, f^2(y)) + d(f^2(y), f(y)) < \epsilon/2 + \epsilon/2 = \epsilon.$$

Suppose that J_v contains just five elements, y, f(y), $f^2(y)$, $f^3(y)$, and $f^4(y)$. Since $d(f(y), f^3(y)) < \epsilon/2$ and $d(f^3(y), y) < \epsilon/2$, $d(y, f(y)) < \epsilon$. Likewise $d(z, f(z)) < \epsilon$ for each z in J_v . Define g(y) = f(y), $g[f(y)] = f^3(y)$, $g[f^3(y)] = f(y)$, $g[f^2(y)] = f^4(y)$, and $g[f^4(y)] = f^2(y)$. For each of the five elements, $d(f(x), g(x)) < \epsilon$. Suppose that J_v contains but one element. If $V \neq A$ let g(y) = y. Suppose that V = A, i.e., A is of power $<2^{\aleph_0}$. If, for some x, J_x contains more than one element, let g(y) = y. Suppose that $J_x = \{x\}$ for each x in V. Since V is nondenumerable, there exist two elements u and v in V such that $d(u, v) < \epsilon$. Let g(u) = v, g(v) = u, and g(x) = x for each x in $V - \{u, v\}$. If V = A, then g is a well defined function of V onto V, of period two, which ϵ -approximates f. By Lemma 1, g is a dishomeomorphism. If $V \neq A$, then g is a function of period ≤ 2 .

Suppose that A is of power 2^{\aleph_0} . Let W=A-V. We modify the demonstration given in Theorem 1. Denote by F the set of those couples (f, B), where B is a G_{δ} of A of power 2^{\aleph_0} , and f is a homeomorphism of B into A^* , A^* being the completion of A. Well order the elements of W and of F into the sequence $\{u_{\xi}\}, \xi < \theta$, and $\{(f_{\xi}, B_{\xi})\}, \xi < \theta$, respectively. Suppose that the elements

$$w_{\xi}$$
, $x_{\xi} = g(w_{\xi})$, and $z_{\xi} = g(y_{\xi})$

have been defined for $\xi < \alpha$. Let w_{α} be the first element in

(3)
$$W - \{w_{\xi}, x_{\xi}, y_{\xi}, z_{\xi} | \xi < \alpha\}.$$

There exists a set D_i , say $D_{r(\alpha)}$, which contains w_{α} . Let x_{α} be the first element in the set

$$(4) \begin{array}{c} E_{r(\alpha)} - \left[\left\{ w_{\xi}, \ x_{\xi}, \ y_{\xi}, \ z_{\xi} \ \middle| \ \xi < \alpha \right\} \\ \cup \left\{ w_{\alpha} \right\} \cup \left\{ f_{\xi}(w_{\alpha}) \ \middle| \ \xi \leq \alpha \right\} \cup \left\{ f_{\xi}^{-1}(w_{\alpha}) \ \middle| \ \xi \leq \alpha \right\} \right]. \end{array}$$

The element x_{α} certainly exists since $D_{r(\alpha)}$, thus $E_{r(\alpha)}$, is of power 2^{\aleph_0} , whereas the set in the brackets is of power $<2^{\aleph_0}$. Define $g(w_{\alpha})$ to be x_{α} and $g(x_{\alpha})$ to be w_{α} . Since $f(w_{\alpha})$ is in $E_{r(\alpha)}$ and the diameter of $E_{r(\alpha)}$ is $<\epsilon/2$, $d(f(w_{\alpha}), g(w_{\alpha})) < \epsilon$. Now there exists an element a_{α} in $D_{r(\alpha)}$ such that $f(a_{\alpha}) = x_{\alpha}$. Thus

$$d(f(x_{\alpha}), g(x_{\alpha})) = d(f^{2}(a_{\alpha}), w_{\alpha}) \leq d(a_{\alpha}, w_{\alpha}) + d(a_{\alpha}, f^{2}(a_{\alpha}))$$
$$< \epsilon/2 + \epsilon/2 = \epsilon.$$

Let z_{α} be the first element in the set

$$(5) W - [\{w_{\xi}, x_{\xi}, y_{\xi}, z_{\xi} | \xi < \alpha\} \cup \{w_{\alpha}, x_{\alpha}\}].$$

 $f(z_{\alpha})$ is in one of the sets D_i , say $D_{s(\alpha)}$. Let y_{α} be the first element in the set

$$(6) \begin{array}{c} D_{s(\alpha)} - \left[\left\{ w_{\xi}, x_{\xi}, y_{\xi}, z_{\xi} \mid \xi < \alpha \right\} \\ \cup \left\{ w_{\alpha}, x_{\alpha}, z_{\alpha} \right\} \cup \left\{ f_{\xi}(z_{\alpha}), f_{\xi}^{-1}(z_{\alpha}) \mid \xi \leq \alpha \right\} \right]. \end{array}$$

Define $g(y_{\alpha})$ to be z_{α} and $g(z_{\alpha})$ to be y_{α} . Evidently $d(f(z_{\alpha}), g(z_{\alpha})) = d(f(z_{\alpha}), y_{\alpha}) < \epsilon$. Also

$$d(f(y_{\alpha}), g(y_{\alpha})) = d(f(y_{\alpha}), z_{\alpha}) \leq d(f(y_{\alpha}), f^{2}(z_{\alpha})) + d(z_{\alpha}, f^{2}(z_{\alpha})) < \epsilon.$$

The function g is well defined, of period two (since g is not the identity mapping), and ϵ -approximates f. From (3) and (5), g maps W onto W, thus A onto A. As in Theorem 1 we see that g is a dishomeomorphism. Q.E.D.

COROLLARY. Each function, of period two, of a nondenumerable space A into itself is the limit of a uniformly convergent sequence of functions $\{f_n(x)\}$, each function being of period two, and each function being a dishomeomorphism of A onto A.

If "nondenumerable" is removed from the hypothesis of Theorem 3, then the conclusion is no longer valid. For example, let A be the set of positive integers, f the identity, and $\epsilon = 1/3$. The only function which ϵ -approximates f is f itself. However f is not of period two.

In view of the previous example, an arbitrary function of a space D need not be ϵ -approximated by a function which is strongly of period n. However, we do have

THEOREM 4. Suppose that each element of D is a c-condensation point of D. Let n be any integer >1 and let f be a continuous function of D into itself such that for each x in D, (i) $d(x, f^n(x)) < \epsilon/2$, and (ii) $f^{-1}(x)$ is of power $< 2^{\aleph_0}$. Then there exists a function g, strongly of period n, which ϵ -approximates f.

PROOF. Let S(x) denote the sphere in D of radius ϵ and center x. Let F be the set of all pairs (h, B), where B is a G_{δ} of D and h is a homeomorphism of B into E, E being the completion of D. Well order the

elements of D and F into the sequences $\{x_{\xi}\}$, $\xi < \theta$, and (f_{ξ}, B_{ξ}) , $\xi < \theta$, respectively. For $\xi < \alpha$ suppose that u_{n}^{ξ} , $1 \le i \le n$, have been defined so that $g(u_{j}^{\xi}) = u_{j+1}^{\xi}$ for j < n and $g(u_{n}^{\xi}) = u_{1}^{\xi}$. Let u_{1}^{α} be the first element in $D - G_{\alpha}$, where $G_{\alpha} = \{u_{j}^{\xi} | \xi < \alpha, j \le n\}$. Let O_{1}^{α} be an open subset of $S(u_{1}^{\alpha})$ containing u_{1}^{α} such that $f(O_{1}^{\alpha}) \subseteq S(f(u_{1}^{\alpha}))$. The continuity of f assures us that O_{1}^{α} exists. Since O_{1}^{α} is open, each element in O_{1}^{α} is a c-condensation point of O_{1}^{α} . The continuity of f and (ii) of the hypothesis imply that each point of $f(O_{1}^{\alpha})$ is a c-condensation point of $f(O_{1}^{\alpha})$. Suppose that O_{i}^{α} and u_{i}^{α} have been defined for i < j < n so that O_{i}^{α} contains u_{i}^{α} , $f(O_{i}^{\alpha}) \subseteq S(f(u_{i}^{\alpha}))$, and each point of $f(O_{i}^{\alpha})$ is a c-condensation point of $f(O_{i}^{\alpha})$. Let u_{1}^{α} be the first element in

$$f(O_{j-1}^{\alpha}) - \left[G_{\alpha} \cup \left\{u_i^{\alpha} \mid i < j\right\} \cup \left\{f_{\xi}(u_{j-1}^{\alpha}) \mid \xi \leq \alpha\right\}\right].$$

The power condition on the sets guarantee the existence of u_j^{α} . Let O_j^{α} , $O_j^{\alpha} \subseteq f(O_{j-1}^{\alpha})$ be an open set, relative to $f(O_{j-1}^{\alpha})$, containing u_j^{α} so that $f(O_j^{\alpha}) \subseteq S(f(u_{j-1}^{\alpha}))$. Since each element of $f(O_{j-1}^{\alpha})$ is a c-condensation point of $f(O_{j-1}^{\alpha})$ and O_j^{α} is open in $f(O_{j-1}^{\alpha})$, O_j^{α} , thus $f(O_j^{\alpha})$ have the same property. Let u_n^{α} be the first element in

$$f(O_{n-1}^{\alpha}) - \left[G_{\alpha} \cup \left\{u_{i}^{\alpha} \mid i \leq n-1\right\} \cup \left\{f_{\xi}(u_{n-1}^{\alpha}), f_{\xi}^{-1}(u_{1}^{\alpha}) \mid \xi \leq \alpha\right\}\right].$$

Let $g(u_i^{\alpha}) = u_{i+1}^{\alpha}$ for i < n and $g(u_n^{\alpha}) = u_1^{\alpha}$.

By the induction, g is defined on all of D. Evidently g is strongly of period n. Being periodic, g maps D onto D. Repeating the argument used in Lemma 2 in conjunction with $f_{\xi}(u_j^{\alpha}) \neq g(u_j^{\alpha})$ for $\alpha \geq \xi$ and $j \leq n$, it follows that g is a dishomeomorphism. For i < n, $g(u_i^{\alpha})$ is in $S(f(u_i^{\alpha}))$, i.e., $d(f(u_i^{\alpha}), g(u_i^{\alpha})) < \epsilon$. Since $O_{i+1}^{\alpha} \subseteq f(O_i^{\alpha})$ for i < n-1, there exists a z_{α} in O_{1}^{α} such that $f^{n-1}(z_{\alpha}) = u_n^{\alpha}$. Then

$$d(f(u_n^{\alpha}), g(u_n^{\alpha})) = d(f(u_n^{\alpha}), u_1^{\alpha}) \leq d(u_1^{\alpha}, z_{\alpha}) \pm d(z_{\alpha}, f^{n}(z_{\alpha}))$$
$$< \epsilon/2 + \epsilon/2 = \epsilon,$$

since $d(x, f^n(x)) < \epsilon/2$ by hypothesis. Hence g ϵ -approximates f.

THEOREM 5. For each infinite space D and each integer n>1 there exists a dishomeomorphism which is strongly of period n on D.

PROOF. Let B be the set of c-condensation points of D which are in D. If D is of power $<2^{\aleph_0}$, let A=D. If D is of power 2^{\aleph_0} , let $A=(D-B)\cup F$, where F is a denumerably infinite subset of D. In either case A is an infinite set of power $<2^{\aleph_0}$. Let A be the union of n disjoint sets A_i , each having the same power as A. This is possible since A is infinite. For i < n let f_i be a one to one mapping of A_i onto

 A_{i+1} , and let f_n be a one to one mapping of A_n onto A_1 . For x in A_i let $f(x) = f_i(x)$. Since A is of power $< 2^{\aleph_0}$, f is a dishomeomorphism. Clearly f is strongly of period n. If A = D, then f is the desired function. Suppose that $A \neq D$. By Theorem 4, there exists a dishomeomorphism g, strongly of period n, on D-A, which ϵ -approximates the identity function. The function h, which coincides with f on A and coincides with g on D-A, is then the desired function.

We close with the following question: Given two separable metric spaces D and E of power 2^{\aleph_0} each, does there exist a one to one function f of D into E so that for each subset A of D, of power 2^{\aleph_0} , A and f(A) are not homeomorphic (not necessarily under f)?

BIBLIOGRAPHY

- 1. M. Lavrentieff, Contribution à la théorie des ensembles homéomorphes, Fund. Math. vol. 6 (1924) p. 149.
- 2. W. Sierpiński and A. Zygmund, Sur une fonction que est discontinue sur tout ensemble de puissance du continu, Fund. Math. vol. 4 (1923) pp. 316-318.

University of Miami