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Throughout this paper, G will denote a nondegenerate continuous

collection of atriodic continuous curves (i.e. arcs or simple closed

curves) filling up a compact metric continuum M. As is well known,

we may regard G itself as a compact metric continuum, with the

elements of the collection G as the points of the space G and with G,

as a space, the image of M under an open continuous mapping whose

inverse sets are the elements of the collection G.

The principal results of this paper are the following theorems.

Theorem I. No closed, totally disconnected point set separates M.1

Theorem 11. If each element of G is an arc, then no closed, totally

disconnected point set separates any connected open subset of M.

Theorem III. If G is a two-dimensional Cantor manifold2 then M

is not separated by any rational curve.3

As an immediate corollary of Theorem I, we have

Theorem IV.4 At no point of M is the dimension of M less than 2.

A well known result cited in [2, Theorem VI7, page 91 ] states, in

effect, that if dim M — dim G = k>0, then at least one element of G

has dimension not less than k. From Theorem IV, this result, and the

fact that every atriodic continuous curve is one-dimensional, we ob-

tain

Theorem V. If G is a one-dimensional continuum, then M is two-

dimensional at each of its points.

Presented to the Society, December 27, 1954; received by the editors December 7,

1954.
1 The theorem of [l ] shows emphatically that Theorem I cannot be strengthened

to the extent of deleting the condition that the continuous curves of G be atriodic.

2 An w-dimensional Cantor manifold is a compact metric n-dimensional space

which is not separated by any {n — 2)-dimensional subspace.

3 A rational curve is a compact metric continuum K such that each point of K is

contained in arbitrarily small neighborhoods relative to K whose boundaries are

countable. It is to be noted that a rational curve is not necessarily locally connected.

4 Eldon Dyer has recently obtained some general and interesting theorems about

the dimension of G if M is M-dimensional and G is a continuous collection of arcs (or

dendrons).
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We shall give a proof of Theorem I in some detail. The proofs of

Theorems II and III are similar to that of Theorem I. We shall simply

indicate the arguments for these.

A simple chain in If is a finite collection Xi, x2, ■ ■ • , x„ of open sets

such that Xi-Xj exists if and only if | i— j\ —1. The sets Xi, x2, • • • , x„

are called the links of the chain. We note that if 5 is an open interval

of the arc / which lies in M, there is an open subset U of M such that

U-t = s and Ut = s. If t is an arc and « is any positive number, then

there exists a simple chain C covering / each of whose links is of diam-

eter less than e and intersects t in a connected set.

A special case of a result of J. H. Roberts [3, Theorem 2] states

that if E is a continuous collection of arcs filling up a compact metric

space, there is a subcollection E' of E such that £' is dense in E and

E is equicontinuous6 at each element of E'. An argument suggested

by that outlined in [3] yields a similar result in the case where E is

a continuous collection of atriodic continuous curves. We do not give

this argument in detail but henceforth let G' be a subcollection of G

at each element of which G is equicontinuous.

Proof of Theorem I. Suppose, contrary to the statement of

Theorem I that some closed, totally disconnected point set T sepa-

rates M into sets Dx and D2. Then, since M is connected and G is

continuous, some element gi of G intersects each of Di and D2 and,

since G' is dense in G, some element g of G' intersects each of Di and

D2. Let h, with endpoints ai and a2 in D\ and D2 respectively, be an

arc in g. For each i, i = 1, 2, let Ai be an open set containing a,- with

Ai contained in £>,-. Let C: a, • ■ ■ , c6 be a simple chain covering h

such that (1) Ci — Cid contains Ai, (2) c6 — Ci-c6 contains A2, (3)

ci + c2is a subset of A, (4) C4 + C5 is a subset of D2, (5) fori = l, • • ■ , 5,

Ci- h is connected, and (6) for i — 2, 3, 4, c,- and g — h are mutually ex-

clusive. Clearly such a chain exists. Let U containing g be an open

subcollection of G such that each element u of U contains an arc ux

with endpoints in Ai and A2 respectively such that (1) ux is covered

by C, (2) u — ux does not intersect c3, and (3) ux does not contain two

disjoint arcs each intersecting Ai and c3, A2 and c3, or c2 and c4.

From the equicontinuity of G at g it follows that such a set U exists.

Let G containing g be a nondegenerate closed connected subcollec-

tion of U and let 77 containing h be a collection of arcs in one-to-one

correspondence with G such that each element of 77 is contained in

6 The collection G as above is said to be equicontinuous at the element g of G

provided that for any e>0 and any point p of g, there exists aS>0 such that if * and

y are points of the same element g' of G and are each within 5 of p, then there is an

arc in g' containing x+y and of diameter less than «.
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the corresponding element of G, is covered by C, and has its end-

points in ^4i and A2 respectively. Let B be topologized so as to be

homeomorphic with G under the correspondence above.

Let g' be an element of G distinct from g and let h' be the cor-

responding element of 8. Let W be an open set in c3—(c2+ct) c3 such

that W—W does not intersect T, W contains Th, and W does not

intersect h'. Let Z\ and Z2 be the subsets of IF—IF in D\ and D2 re-

spectively. Each of Zi and Z2 is closed.

For each element k of B, let N(k) be the collection of those com-

ponents of k- W having limit points in each of Z\ and Z2. Let n(k)

be the number (mod 2) of elements in N(k). Let B0 be the collection

of all elements k of B for which n(k) =0. The collection B0 contains

h' and B—B0 contains h. We wish to show that each of 80 and

B—B0 is open and hence that G is not connected—a contradiction.

Let h be any element of B. There exists a simple chain C(h) cover-

ing h such that (1) each link of C(h) is a subset of a link of C and

intersects h and (2) no link of C(h) intersects (a) each of Dx and D2

but not T, (b) each of Zi and Z2, or (c) each of IF and I — T- W.

Let X(h) be the collection of links of C(h) intersecting IF. Let Y(Jt)

be the collection of all maximal simple chains whose links are ele-

ments of X(h). If k is any element of B containing a subarc k' with

endpoints in A\ and A2 and with k' covered by C(h), then n(k) =n(h).

This follows from the fact that each element of N(k) is covered by

exactly one element of Y(h) and the number of elements of N(k) in

an element y of Y(h) is 1 or 0 (mod 2) according as the end links of

y do or do not intersect different sets of the two sets Zi and Z2.

Hence B0 and B—B0 are each open and Theorem I is proved.

Indication of proof of Theorem II. Suppose, contrary to Theo-

rem II that there exists a connected open set D in M separated by a

closed and totally disconnected set T. Let (Dx, D2) be a separation

of D by T. Then some element of G must contain an arc in D with

endpoints in D\ and D2 respectively. Since G is a collection of arcs,

some element of G' must also contain an arc in D with endpoints in

Di and D2 respectively and the argument is essentially reduced to

that for Theorem I. We note that if the elements of G are not re-

stricted to being arcs, then there exist simple examples without such

an element of G' existing and with an open set separated by a point.

Indication of proof of Theorem III. Suppose G is a two-dimen-

sional Cantor manifold and M is separated by a rational curve /

into the two mutually separated sets Z>i and D2. Clearly some ele-

ment of G must intersect each of Di and D2 for otherwise the set of

those elements of G lying completely in / must exist and be closed
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and in G must separate G. But by Theorem I this set is 0-dimen-

sional, a contradiction. Hence some element of G intersects each of

7>i and D% and thus some element of G' contains an arc h with end-

points in 7>i and D2 respectively. But by an argument similar to that

used in the proof of Theorem I we can exhibit an open subcollection

U of G with U containing g and with U— U countable, a contradic-

tion.
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A NOTE ON BASIC SETS OF HOMOGENEOUS
HARMONIC POLYNOMIALS

E. P. MILES, JR. AND E. WILLIAMS

For any set of non-negative integers  (bf)  such that fa = 1 and

22j-1 bj = n, let

fi]i
co   rt.....,-z(-D-"'-^— , „,    , n*v

n.,1 n(^Y'-'
>-i y-2 \     £     /

where the summation is extended over all (a/) such that,

(a) ffysjy mod 2, 7 = 1, 2, • ■ • , k,

(b) Z«*-i <*/=».
(c) aj = bj,j = 2, 3, ■ ■ ■ , k.

The polynomials (1) were shown by the authors to form a basic set

of homogeneous harmonic polynomials in k variables [l].1

It is easily seen that the following differential recursion formulas

hold for these polynomials:

Presented to the Society, November 26, 1954 under the title A basic set of homo-

geneous polynomials in k variables. II; received by the editors November 29, 1954.

1 Numbers in brackets refer to bibliography at the end of the paper.


