FREE IDEALS IN RINGS OF FUNCTIONS
E. S. WOLK

1. Introduction. Let X be any infinite set, and R a ring with unit
element e. Let A(X, R) be the ring of all functions from X to R, with
the usual definitions of 4 and -. No topological considerations are
introduced; i.e., all the sets involved are taken as discrete. Let I be
an ideal in 4. Following Hewitt [2] and Kaplansky [3], we say that
I is free if and only if for each xE€X there exists fEI such that
f(x) =e. The purpose of this paper is to give an exact character-
ization of all the free left ideals of A. The results take a particularly
simple form if we make the additional assumption that every left ideal
in R is principal.

2. Preliminary definitions and lemmas. Let us denote by L the set
of all left ideals of R. We shall consider L as a lattice under the usual
operations of 4+ and M. We admit {0} and R as elements of L.

We denote by LX the set of all functions from X to L. If pELZX,
g&LX, we define p=q to mean that p(x) =¢(x) for all but a finite
number of x&EX. We define p+¢ by (p+¢q)(x)=p(x)+¢(x), and
Mg by (pMg)(x) =p(x)MNg(x). Under these operations LX becomes
a lattice, in which p <g means that p(x) Cg(x) for all but a finite num-
ber of x &€ X. The function in LX which is identically 0 will be denoted
by 8. For each pELX we define u(p) = {x€X|p(x) #R}.

The set of all subsets of X will be denoted by 2X. If a &2X, BE2X,
we define ¢ =0 to mean that a and 8 are identical save for a finite
set of points. We denote the empty set by &. Thus a= & means
that « is a finite subset of X. We consider 2X as a lattice under
the usual operations of \U and M. In this lattice «CB means that
all but a finite number of points of « lie in 3.

The set of all free left ideals of 4(X, R) will be denoted by F(4).

The proof of the following lemma may be left to the reader.

LeMMA 1. Let x1, %3, * + +, %, be a finite number of points of X, and
let a1, a3, - -+, an be arbitrary elements of R. Then for any IS F(4)
there exists f& I such that f(x;) =a; for 1=1,2, - - -, n, and f(x) =0 for
all other xE€X.

Let us write

Jo={fEA4|f(x) =0 for all but a finite number of xEX}.
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Clearly JoEF(A). If I is any left ideal in 4, Lemma 1 implies that
IE€ F(4) if and only if IDJ,. Thus the intersection of any number of
ideals in F(A) is again an ideal in F(A4). Also it is obvious that
I,EF(A) and I,EF(A) imply I, +1.&E F(A). Hence F(A) is a lattice
with respect to 4+ and M, and the ideal J, is its O element.

For ac2X, pELX, we now define

J(a, p) = {fEA lf(x)Ep(x) for all but a finite number of an},

with the agreement that J(&, p) =4 for all p. It is clear that J(e, p)
€ F(A4), and that J(X, ) =J,. The following facts are also obvious.

LEMMA 2.

(1) J(a, p) =4 if and only if u(p)Na=&.

(2) J(a, p)CI(B, p) if and only if Ca.

(3) J(e, p)CJ (e, @) if and only if p(x)Cq(x) for all but a finite
number of xEa.

LemMma 3. J(a, p)+J(B, ¢) =T (aMNB, p+4g).

ProoF. Suppose fEJ(a, p), g&J(B, ¢). Then for all but a finite
number of xEaMB, we have f(x)+g(x) Ep(x)+q(x). Hence J(a, p)
+J(B, ¢) CJ(aMB, p+¢q). Conversely, suppose that f& J(aMB, p+q).
We define functions f; and f> in 4 as follows:

f1=0 on the complement of a\UB,
fi=fon Nea’,
fl =0 on af\ﬁ’,
f2=f on the complement of a\JUB,
f2=0 on ﬁma’,
fo=fon aMp’.
For xEaMp we have f(x) =a,+b,, where a,Ep(x) and b,Eq(x) for
all but a finite number of xEaMB. Thus for xEaMB, we define
fi(x) =a,, fo(x) =b,. Then LE J(a, p), LEJ(B, ¢), and f=f+f,. Hence
J(@MB, p+q) CJ(a, p)+J(B, 9.
Now for fEA, let us write
a(f)= {xEX!f(x) has no left inverse},
A(f) =complement of o(f).

Also, for fEA, we define p,&LX by
ps(x) = [f(x)] =left ideal generated by f(x).
Leuma 4. If I F(4) and f€1, then J(a(f), p) C1.
Proor. Suppose g&J(a(f), 7). Then g(x) Eps(x) for all x&a(f)
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except for a finite set of points xi, xe, * - -, x. Le., for each xEo(f),
x#x;, there exists a,& R such that g(x) =a.f(x). For x E\(f), let f~1(x)
denote any left inverse of f(x). Let us define a function g; in 4 as
follows:

g(x) =a, for xCa(f) — {x1, %1, - * -, %a},

gi(x) =0 for x=x;,1=1,2, - - - | n,

g1(x) =g(x) - f~1(x), for xEN(f).
Then for =1, 2, - - -, n we have (gif)(x;) =0, and (gif) (x) =g(x) for
all other x€X. But by Lemma 1, there exists #&1 such that h(x;)
=g(x;) for t=1, 2, - - -, n, and k(x) =0 for all other x. Then g=gf

+rel

3. Structure of the free left ideals of A( X, R). Following Birkhoff
[1, p. 21], we introduce the following definitions.

DEFINITION. A subset K of LX is an tdeal in LX if and only if

(1) pEK and ¢EK imply p+¢EK,

(2) pEK and g<p imply ¢EK.

The set of all ideals of LX will be denoted by K(X, R). We admit
{6} and LX as elements of K(X, R).

DEFINITION. A subset D of 2X is a dual ideal in 2% if and only if

(1) a&D and BED imply aNBED,

(2) a&ED and BDa imply BED.

The set of all dual ideals of 2X will be denoted by D(X). We admit
{X} and 2% as elements of D(X).

Now for DED(X) and KEK (X, R) we define

J(D, K) = U  J(a p),
«ED,pEK
where the “U” denotes the set-theoretic union of the J(a, p). We
verify that J(D, K)E& F(A4). Suppose that f and g are functions in
J(D, K). Then there exist @ and 8 in D, and p and ¢ in K, such that
f€J(e, p) and g&€J(B, ¢). By Lemma 3, f+g&J(@MNB, p+q)
CJ(D, K), from which it follows that J(D, K) is a left ideal.

Also note that J(D, K)=A implies that the function which is
identically equal to e is in J(a, p) for some o €D and p EK; from this
it follows that J(D, K) =4 if and only if J(«, p) =4 for some aED,
PEK.

LeMMA 5. IEF(A) implies I =Uagp o1 (@, pg) for some DED(X).

Proor. Define D= {o(f)|fEI}. (It is obvious that D=2 if and
only if I=A.) We show that DED(X). Clearly, a €D and y Da imply
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v &ED. (Use the function which is 0 on v and e on XN\v’.) Now suppose
a&ED, BED, a=0(f), B=0(g), where f, g&I. Let us define f*& 4 and
g*¥*EA as follows:

f*(x) =any left inverse of f(x), for x EX(/),

f*(x) =0 for xEc (),

g*(x) =0 for xEa(g),

g*(x) =any left inverse of g(x), for xEX(g) Mo (f),
g*(x) =0 for xEX(g) ().

Then (f*f+g*g)(x) =0 for xEa(f)Ma(g), and (f*f+g*g)(x) =e for all
other x©X. Hence o(f*f+g*g) =a(f)MNa(g) =aMB. But f¥f+g*gcI.
Hence aMBED, and it follows that DED(X).

Now let f and g be arbitrary functions in I. By Lemma 4, J(a(f), py)
CI, J(o(g), p,) CI; and hence by Lemma 3, J(a(f)Na(g), pr+p,) CI.
Using (2) and (3) of Lemma 2, we then have

J(@(f), po) CI(e(f) M a(g), po) CTI(e(f) N alg), pr+ p0) CI,

and hence U.ep .1 J(a, p,) CI. Since it is obvious that we also have
ICU.ep.e1 J(@, py), the lemma is proved.
We are now ready for our main result.

THEOREM 1. Let R be a ring with unit in which each left ideal is prin-
cipal, and let A be the ring of all functions from X to R. Then IC F(A)
if and only if I=J(D, K) for some DED(X) and KEK(X, R).

Proor. Define D asin Lemma 5. Let K = {p,| gEI}. We show that
KEK(X, R). First suppose that p,€ K and g <p,. Then g(x) Cp,(x)

for all xEX save for a finite set of points xi, x3, * * -, %X,. Since g(x)
generates the ideal p,(x), then for x>£x;, =1, 2, - - -, n, there exists
m.& R such that m.,g(x) generates the ideal g(x). Define a function
f1€4 by fi(x) =m, for x£x;, and fi1(x;) =0 fort=1,2, - - -, n. Let a;
be an element of R which generates the ideal g(x;). By Lemma 1,
there exists fo& I such that fo(x;) =a,fori=1,2, - - -, n, and fo(x) =0

for all other x©X. Then f=fig+f.EI, and p;=4q. Hence ¢EK.

Now suppose that g&€I and #&1. For each xEX, let ¢, be an ele-
ment of R which generates the ideal p,(x)+pa(x). Let f be the func-
tion in 4 such that f(x) =¢, for all x. Then p;=p,+ps. But fE J(a(g)
Mo (h), po+pr) CI. Hence p,+pr S K, and KEK (X, R). The theorem
now follows from Lemma 5.

4. A special case. In the special case when R is a division ring, the
above discussion is of course greatly simplified; and we can also easily
obtain an abstract characterization of the lattice F(4). Assuming
now that R is a division ring, we define, for o &2X%,
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J(@) = {fEA|f(x) =0 for all but a finite number of xEa},

with the agreement that J(&) =4. The following relations are easily
verified.

LEMMA 6. For a 2%, BE2X, we have
J(a) + J(B) = J(@MB),
J(@) NI(B) = J(e\UB).

For DED(X), we now define J(D) =U.ep J(a). We then obtain
the following form of Theorem 1, making the appropriate simplifica-
tions in the proof. This result has, in essence, already been obtained
by Hewitt [2, Theorem 36]. We omit the details.

THEOREM 1’. Let R be a division ring, A the ring of all functions from
X to R. Then IE F(A) if and only if I =J(D) for some DED(X).

In this special case we now show how to construct from the set X
a lattice-isomorphic image of the lattice F(A4). First we prove

LEMMA 7. J(Dy) =J(Dy) if and only if D1=D,.

Proor. Suppose J(D1) =J(D,), and a € D;. The function f which is
0 on a and e on the complement of « is in J(a) CJ(Dy). Then fE J(B)
for some B&E D,. This means a DB, whence a &€ D,. Hence D;CD., and
likewise Dy C D;.

Now for D;ED(X), D.ED(X), we define

DN\ D, =set-theoretic intersection of D; and D,,
D1+ D, = {7€2X|'yjaﬂ6 for some a & D, and 6€D2}.

It is easily verified that D(X) forms a lattice under these operations.
We then obtain the following theorem, the proof of which will be left
to the reader.

THEOREM 2. Let R be a division ring, and A the ring of all functions
from X to R. Then the correspondence J(D)<>D is a lattice-isomorphism
of F(A) with D(X).
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