FREE IDEALS IN RINGS OF FUNCTIONS

E. S. WOLK

- 1. Introduction. Let X be any infinite set, and R a ring with unit element e. Let A(X, R) be the ring of all functions from X to R, with the usual definitions of + and \cdot . No topological considerations are introduced; i.e., all the sets involved are taken as discrete. Let I be an ideal in A. Following Hewitt [2] and Kaplansky [3], we say that I is free if and only if for each $x \in X$ there exists $f \in I$ such that f(x) = e. The purpose of this paper is to give an exact characterization of all the free left ideals of A. The results take a particularly simple form if we make the additional assumption that every left ideal in R is principal.
- 2. Preliminary definitions and lemmas. Let us denote by L the set of all left ideals of R. We shall consider L as a lattice under the usual operations of + and \cap . We admit $\{0\}$ and R as elements of L.

We denote by $L^{\mathbf{X}}$ the set of all functions from X to L. If $p \in L^{\mathbf{X}}$, $q \in L^{\mathbf{X}}$, we define p = q to mean that p(x) = q(x) for all but a finite number of $x \in X$. We define p + q by (p + q)(x) = p(x) + q(x), and $p \cap q$ by $(p \cap q)(x) = p(x) \cap q(x)$. Under these operations $L^{\mathbf{X}}$ becomes a lattice, in which p < q means that $p(x) \subset q(x)$ for all but a finite number of $x \in X$. The function in $L^{\mathbf{X}}$ which is identically 0 will be denoted by θ . For each $p \in L^{\mathbf{X}}$ we define $\mu(p) = \{x \in X \mid p(x) \neq R\}$.

The set of all subsets of X will be denoted by 2^x . If $\alpha \in 2^x$, $\beta \in 2^x$, we define $\alpha = \beta$ to mean that α and β are identical save for a finite set of points. We denote the empty set by \emptyset . Thus $\alpha = \emptyset$ means that α is a finite subset of X. We consider 2^x as a lattice under the usual operations of \cup and \cap . In this lattice $\alpha \subset \beta$ means that all but a finite number of points of α lie in β .

The set of all free left ideals of A(X, R) will be denoted by F(A). The proof of the following lemma may be left to the reader.

LEMMA 1. Let x_1, x_2, \dots, x_n be a finite number of points of X, and let a_1, a_2, \dots, a_n be arbitrary elements of R. Then for any $I \in F(A)$ there exists $f \in I$ such that $f(x_i) = a_i$ for $i = 1, 2, \dots, n$, and f(x) = 0 for all other $x \in X$.

Let us write

 $J_0 = \{ f \in A \mid f(x) = 0 \text{ for all but a finite number of } x \in X \}.$

Received by the editors May 12, 1954 and, in revised form, December 20, 1954.

Clearly $J_0 \in F(A)$. If I is any left ideal in A, Lemma 1 implies that $I \in F(A)$ if and only if $I \supset J_0$. Thus the intersection of any number of ideals in F(A) is again an ideal in F(A). Also it is obvious that $I_1 \in F(A)$ and $I_2 \in F(A)$ imply $I_1 + I_2 \in F(A)$. Hence F(A) is a lattice with respect to + and \cap , and the ideal J_0 is its 0 element.

For $\alpha \in 2^X$, $p \in L^X$, we now define

$$J(\alpha, p) = \{ f \in A \mid f(x) \in p(x) \text{ for all but a finite number of } x \in \alpha \},$$

with the agreement that $J(\emptyset, p) = A$ for all p. It is clear that $J(\alpha, p) \in F(A)$, and that $J(X, \theta) = J_0$. The following facts are also obvious.

LEMMA 2.

- (1) $J(\alpha, p) = A$ if and only if $\mu(p) \cap \alpha = \emptyset$.
- (2) $J(\alpha, p) \subset J(\beta, p)$ if and only if $\beta \subset \alpha$.
- (3) $J(\alpha, p) \subset J(\alpha, q)$ if and only if $p(x) \subset q(x)$ for all but a finite number of $x \in \alpha$.

LEMMA 3. $J(\alpha, p) + J(\beta, q) = J(\alpha \cap \beta, p+q)$.

PROOF. Suppose $f \in J(\alpha, p)$, $g \in J(\beta, q)$. Then for all but a finite number of $x \in \alpha \cap \beta$, we have $f(x) + g(x) \in p(x) + q(x)$. Hence $J(\alpha, p) + J(\beta, q) \subset J(\alpha \cap \beta, p+q)$. Conversely, suppose that $f \in J(\alpha \cap \beta, p+q)$. We define functions f_1 and f_2 in A as follows:

 $f_1 = 0$ on the complement of $\alpha \cup \beta$, $f_1 = f$ on $\beta \cap \alpha'$, $f_1 = 0$ on $\alpha \cap \beta'$, $f_2 = f$ on the complement of $\alpha \cup \beta$, $f_2 = 0$ on $\beta \cap \alpha'$, $f_2 = f$ on $\alpha \cap \beta'$.

For $x \in \alpha \cap \beta$ we have $f(x) = a_x + b_x$, where $a_x \in p(x)$ and $b_x \in q(x)$ for all but a finite number of $x \in \alpha \cap \beta$. Thus for $x \in \alpha \cap \beta$, we define $f_1(x) = a_x, f_2(x) = b_x$. Then $f_1 \in J(\alpha, p), f_2 \in J(\beta, q)$, and $f = f_1 + f_2$. Hence $J(\alpha \cap \beta, p+q) \subset J(\alpha, p) + J(\beta, q)$.

Now for $f \in A$, let us write

 $\sigma(f) = \{x \in X | f(x) \text{ has no left inverse} \},$ $\lambda(f) = \text{complement of } \sigma(f).$

Also, for $f \in A$, we define $p_f \in L^x$ by

$$p_f(x) = [f(x)] = \text{left ideal generated by } f(x).$$

LEMMA 4. If $I \in F(A)$ and $f \in I$, then $J(\sigma(f), p_f) \subset I$.

PROOF. Suppose $g \in J(\sigma(f), p_f)$. Then $g(x) \in p_f(x)$ for all $x \in \sigma(f)$

except for a finite set of points x_1, x_2, \dots, x_n . I.e., for each $x \in \sigma(f)$, $x \neq x_i$, there exists $a_x \in R$ such that $g(x) = a_x f(x)$. For $x \in \lambda(f)$, let $f^{-1}(x)$ denote any left inverse of f(x). Let us define a function g_1 in A as follows:

$$g_1(x) = a_x \text{ for } x \in \sigma(f) - \{x_1, x_1, \dots, x_n\},$$

 $g_1(x) = 0 \text{ for } x = x_i, i = 1, 2, \dots, n,$
 $g_1(x) = g(x) \cdot f^{-1}(x), \text{ for } x \in \lambda(f).$

Then for $i=1, 2, \dots, n$ we have $(g_1f)(x_i)=0$, and $(g_1f)(x)=g(x)$ for all other $x \in X$. But by Lemma 1, there exists $h \in I$ such that $h(x_i)=g(x_i)$ for $i=1, 2, \dots, n$, and h(x)=0 for all other x. Then $g=g_1f+h\in I$.

3. Structure of the free left ideals of A(X, R). Following Birkhoff [1, p. 21], we introduce the following definitions.

DEFINITION. A subset K of $L^{\mathbf{x}}$ is an *ideal* in $L^{\mathbf{x}}$ if and only if

- (1) $p \in K$ and $q \in K$ imply $p+q \in K$,
- (2) $p \in K$ and q < p imply $q \in K$.

The set of all ideals of $L^{\mathbf{x}}$ will be denoted by K(X, R). We admit $\{\theta\}$ and $L^{\mathbf{x}}$ as elements of K(X, R).

DEFINITION. A subset D of 2^{x} is a dual ideal in 2^{x} if and only if

- (1) $\alpha \in D$ and $\beta \in D$ imply $\alpha \cap \beta \in D$,
- (2) $\alpha \in D$ and $\beta \supset \alpha$ imply $\beta \in D$.

The set of all dual ideals of 2^x will be denoted by $\mathcal{D}(X)$. We admit $\{X\}$ and 2^x as elements of $\mathcal{D}(X)$.

Now for $D \in \mathcal{D}(X)$ and $K \in \mathcal{K}(X, R)$ we define

$$J(D, K) = \bigcup_{\alpha \in D, p \in K} J(\alpha, p),$$

where the "U" denotes the set-theoretic union of the $J(\alpha, p)$. We verify that $J(D, K) \in F(A)$. Suppose that f and g are functions in J(D, K). Then there exist α and β in D, and p and q in K, such that $f \in J(\alpha, p)$ and $g \in J(\beta, q)$. By Lemma 3, $f+g \in J(\alpha \cap \beta, p+q) \subset J(D, K)$, from which it follows that J(D, K) is a left ideal.

Also note that J(D, K) = A implies that the function which is identically equal to e is in $J(\alpha, p)$ for some $\alpha \in D$ and $p \in K$; from this it follows that J(D, K) = A if and only if $J(\alpha, p) = A$ for some $\alpha \in D$, $p \in K$.

LEMMA 5. $I \in F(A)$ implies $I = \bigcup_{\alpha \in D, g \in I} J(\alpha, p_g)$ for some $D \in \mathcal{D}(X)$.

PROOF. Define $D = \{ \sigma(f) | f \in I \}$. (It is obvious that $D = 2^{\mathbf{x}}$ if and only if I = A.) We show that $D \in \mathcal{D}(X)$. Clearly, $\alpha \in D$ and $\gamma \supset \alpha$ imply

 $\gamma \in D$. (Use the function which is 0 on γ and e on $X \cap \gamma'$.) Now suppose $\alpha \in D$, $\beta \in D$, $\alpha = \sigma(f)$, $\beta = \sigma(g)$, where f, $g \in I$. Let us define $f^* \in A$ and $g^* \in A$ as follows:

$$f^*(x) = \text{any left inverse of } f(x), \text{ for } x \in \lambda(f),$$

 $f^*(x) = 0 \text{ for } x \in \sigma(f),$
 $g^*(x) = 0 \text{ for } x \in \sigma(g),$
 $g^*(x) = \text{any left inverse of } g(x), \text{ for } x \in \lambda(g) \cap \sigma(f),$
 $g^*(x) = 0 \text{ for } x \in \lambda(g) \cap \lambda(f).$

Then $(f^*f+g^*g)(x)=0$ for $x\in\sigma(f)\cap\sigma(g)$, and $(f^*f+g^*g)(x)=e$ for all other $x\in X$. Hence $\sigma(f^*f+g^*g)=\sigma(f)\cap\sigma(g)=\alpha\cap\beta$. But $f^*f+g^*g\in I$. Hence $\alpha\cap\beta\in D$, and it follows that $D\in\mathcal{D}(X)$.

Now let f and g be arbitrary functions in I. By Lemma 4, $J(\sigma(f), p_f) \subset I$, $J(\sigma(g), p_g) \subset I$; and hence by Lemma 3, $J(\sigma(f) \cap \sigma(g), p_f + p_g) \subset I$. Using (2) and (3) of Lemma 2, we then have

$$J(\sigma(f), p_{\theta}) \subset J(\sigma(f) \cap \sigma(g), p_{\theta}) \subset J(\sigma(f) \cap \sigma(g), p_f + p_{\theta}) \subset I$$
, and hence $\bigcup_{\alpha \in D, \theta \in I} J(\alpha, p_{\theta}) \subset I$. Since it is obvious that we also have $I \subset \bigcup_{\alpha \in D, \theta \in I} J(\alpha, p_{\theta})$, the lemma is proved.

We are now ready for our main result.

THEOREM 1. Let R be a ring with unit in which each left ideal is principal, and let A be the ring of all functions from X to R. Then $I \in F(A)$ if and only if I = J(D, K) for some $D \in D(X)$ and $K \in K(X, R)$.

PROOF. Define D as in Lemma 5. Let $K = \{p_g | g \in I\}$. We show that $K \in K(X, R)$. First suppose that $p_g \in K$ and $q < p_g$. Then $q(x) \subset p_g(x)$ for all $x \in X$ save for a finite set of points x_1, x_2, \dots, x_n . Since g(x) generates the ideal $p_g(x)$, then for $x \neq x_i$, $i = 1, 2, \dots, n$, there exists $m_x \in R$ such that $m_x g(x)$ generates the ideal q(x). Define a function $f_1 \in A$ by $f_1(x) = m_x$ for $x \neq x_i$, and $f_1(x_i) = 0$ for $i = 1, 2, \dots, n$. Let a_i be an element of R which generates the ideal $q(x_i)$. By Lemma 1, there exists $f_2 \in I$ such that $f_2(x_i) = a_i$ for $i = 1, 2, \dots, n$, and $f_2(x) = 0$ for all other $x \in X$. Then $f = f_1g + f_2 \in I$, and $p_f = q$. Hence $q \in K$.

Now suppose that $g \in I$ and $h \in I$. For each $x \in X$, let c_x be an element of R which generates the ideal $p_g(x) + p_h(x)$. Let f be the function in A such that $f(x) = c_x$ for all x. Then $p_f = p_g + p_h$. But $f \in J(\sigma(g) \cap \sigma(h), p_g + p_h) \subset I$. Hence $p_g + p_h \in K$, and $K \in K(X, R)$. The theorem now follows from Lemma 5.

4. A special case. In the special case when R is a division ring, the above discussion is of course greatly simplified; and we can also easily obtain an abstract characterization of the lattice F(A). Assuming now that R is a division ring, we define, for $\alpha \in 2^{x}$,

$$J(\alpha) = \{ f \in A \mid f(x) = 0 \text{ for all but a finite number of } x \in \alpha \},$$

with the agreement that $J(\emptyset) = A$. The following relations are easily verified.

LEMMA 6. For $\alpha \in 2^X$, $\beta \in 2^X$, we have

$$J(\alpha) + J(\beta) = J(\alpha \cap \beta),$$

$$J(\alpha) \cap J(\beta) = J(\alpha \cup \beta).$$

For $D \in \mathcal{D}(X)$, we now define $J(D) = U_{\alpha \in \mathcal{D}} J(\alpha)$. We then obtain the following form of Theorem 1, making the appropriate simplifications in the proof. This result has, in essence, already been obtained by Hewitt [2, Theorem 36]. We omit the details.

THEOREM 1'. Let R be a division ring, A the ring of all functions from X to R. Then $I \in F(A)$ if and only if I = J(D) for some $D \in \mathcal{D}(X)$.

In this special case we now show how to construct from the set X a lattice-isomorphic image of the lattice F(A). First we prove

LEMMA 7.
$$J(D_1) = J(D_2)$$
 if and only if $D_1 = D_2$.

PROOF. Suppose $J(D_1) = J(D_2)$, and $\alpha \in D_1$. The function f which is 0 on α and e on the complement of α is in $J(\alpha) \subset J(D_1)$. Then $f \in J(\beta)$ for some $\beta \in D_2$. This means $\alpha \supset \beta$, whence $\alpha \in D_2$. Hence $D_1 \subset D_2$, and likewise $D_2 \subset D_1$.

Now for $D_1 \in \mathcal{D}(X)$, $D_2 \in \mathcal{D}(X)$, we define

 $D_1 \cap D_2 = \text{set-theoretic intersection of } D_1 \text{ and } D_2$,

$$D_1 + D_2 = \{ \gamma \in 2^X | \gamma \supset \alpha \cap \beta \text{ for some } \alpha \in D_1 \text{ and } \beta \in D_2 \}.$$

It is easily verified that $\mathcal{D}(X)$ forms a lattice under these operations. We then obtain the following theorem, the proof of which will be left to the reader.

THEOREM 2. Let R be a division ring, and A the ring of all functions from X to R. Then the correspondence $J(D) \leftrightarrow D$ is a lattice-isomorphism of F(A) with $\mathcal{D}(X)$.

References

- 1. G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloquium Publications, vol. 25, 1948.
- 2. E. Hewitt, Rings of real-valued continuous functions, Trans. Amer. Math. Soc. vol. 64 (1948) pp. 45-99.
 - 3. I. Kaplansky, Topological rings, Amer. J. Math. vol. 69 (1947) pp. 153-183.

University of Connecticut