
FREE IDEALS IN RINGS OF FUNCTIONS

E. s. wolk

1. Introduction. Let X be any infinite set, and R a ring with unit

element e. Let A(X, R) be the ring of all functions from X to R, with

the usual definitions of + and ■. No topological considerations are

introduced; i.e., all the sets involved are taken as discrete. Let 7 be

an ideal in A. Following Hewitt [2 ] and Kaplansky [3 ], we say that

I is free if and only if for each x£X there exists /£7 such that

f(x)=e. The purpose of this paper is to give an exact character-

ization of all the free left ideals of A. The results take a particularly

simple form if we make the additional assumption that every left ideal

in R is principal.

2. Preliminary definitions and lemmas. Let us denote by L the set

of all left ideals of R. We shall consider L as a lattice under the usual

operations of + and f\ We admit {o} and R as elements of L.

We denote by Lx the set of all functions from X to L. If ££LX,

g£Lx, we define p=q to mean that p(x) =q(x) for all but a finite

number of x£X. We define p+q by (p+q)(x) =p(x)-\-q(x), and

pr^q by (pr\q)(x)=p(x)C\q(x). Under these operations Lx becomes

a lattice, in which p <q means that p(x)(Zq(x) for all but a finite num-

ber of x£X. The function in Lx which is identically 0 will be denoted

by 9. For each ££7X we define p.(p) = {x£Z|^(x) ?±R\.

The set of all subsets of X will be denoted by 2X. If a£2x, /3G2X,

we define a=/8 to mean that a and /3 are identical save for a finite

set of points. We denote the empty set by 0. Thus a = 0 means

that a is a finite subset of X. We consider 2X as a lattice under

the usual operations of \J and C\. In this lattice aC|8 means that

all but a finite number of points of a lie in j3.

The set of all free left ideals of A(X, R) will be denoted by F(A).

The proof of the following lemma may be left to the reader.

Lemma 1. Let Xi, x2, ■ ■ ■ , x„ be a finite number of points of X, and

let ai, a2, • ■ ■ , an be arbitrary elements of R. Then for any I(E.F(A)

there exists/£7 such that f(xi) =at- for i = l, 2, ■ ■ ■ ,n,andf(x)=Ofor

all other x£X.

Let us write

70= {fGA |/(x) =0 for all but a finite number of x£X|.
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Clearly J0CF(A). If I is any left ideal in A, Lemma 1 implies that

ICF(A) if and only if IZ)Jo- Thus the intersection of any number of

ideals in F(A) is again an ideal in F(A). Also it is obvious that

IiEF(A) and I2CF(A) imply Ii+I2CF(A). Hence F(A) is a lattice
with respect to + and f\ and the ideal J0 is its 0 element.

For a£2x, pCLx, we now define

J(a, p) = {fCA \f(x) Cp(x) for all but a finite number of xCa},

with the agreement that J(0, p)=A for all p. It is clear that J(a, p)

CF(A), and that J(X, 8) =J0. The following facts are also obvious.

Lemma 2.

(1) J(a, p) =A if and only if p(p)C\a = 0.
(2) J(a, p) CV(/3, p) if and only if /3Ca.
(3) J(a, p)CJ(a, q) if and only if p(x)Cq(x) for all but a finite

number of x£a.

Lemma 3. J(a, p)+J(B, q)=J(aC\r3, p+q).

Proof. Suppose fCJ(a, p), gCJ(P, q). Then for all but a finite

number of xCaf\p, we have f(x) +g(x) Cp(x) +q(x). Hence J(a, p)

+ J(P, q)CJ(aC\l3, p+q). Conversely, suppose thatfCJ(ar\fi, p+q).

We define functions/i and/2 in A as follows:

/1 = 0 on the complement of aU/3,

/i=/on/?n«',
/i = 0 on aH/3',

f2 =f on the complement of aW/3,

f2 = 0 onfina',
f2=f on af\B'.

For xCaf^fi we have f(x) =ax+bx, where axCp(x) and bxCq(x) for

all but a finite number of xCaC\fi. Thus for x£aP\/3, we define

/i(x) =ax,f2(x) =bx. ThenfiCJ(a, p),f2EJ(P, q), and/ =/i+/». Hence

J(anp, p+q)CJ(a, P)+J(P, q).
Now for/G-4, let us write

<r(f) = {xCX\f(x) has no left inverse},

X(/) = complement of a(f).

Also, for/G-4, we define p/CLx by

pj(x) = [f(x)] =left ideal generated by/(x).

Lemma 4. If ICF(A) and f CI, then J(a(f), pt) CI.

Proof. Suppose gCJ(o~(f), Pi). Then g(x)Cp/(x) for all x£o-(/)
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except for a finite set of points Xi, x2, • ■ ■ , xn. I.e., for each x£cr(f),

x^Xt, there exists ax(E.R such that g(x) =axf(x). For xGM/), let/_1(x)

denote any left inverse of f(x). Let us define a function gi in A as

follows:

gi(x) =ax for x£o-(/) — {xi, xi, ■ • • , x„},

gi(x) =0 for x=Xj, i = l, 2, • • • , n,

gi(x) =g(x)-f-i(x), for xG*(J).

Then for i = l, 2, • ■ • , n we have (gi/)(x,) =0, and (gi/)(x) =g(x) for

all other x£X. But by Lemma 1, there exists &£7 such that h(xi)

= g(xi) for i=l, 2, ■ • • , n, and &(x) =0 for all other x. Then g=gif

+hei.

3. Structure of the free left ideals of A( X, R). Following Birkhoff
[l, p. 21], we introduce the following definitions.

Definition. A subset K of Lx is an ideal in Lx if and only if

(1) pEK and qEK imply p+qEK,
(2) p£K and q<p imply g£7C.

The set of all ideals of Lx will be denoted by K^(X, R). We admit

{0} and Lx as elements of Kj,X, R).

Definition. A subset D of 2X is a dual ideal in 2X if and only if

(1) a£7> and j3£7> imply «n/3£A
(2) a£T> and /3Da imply ,8£T>.

The set of all dual ideals of 2X will be denoted by V(X). We admit

{X} and 2X as elements of V(X).

Now for DEO(X) and KGKix< r) we define

J(D, K) =       U       J (a, p),
«GB,p6i:

where the "U" denotes the set-theoretic union of the J(a, p). We

verify that J(D, i£)£F(4). Suppose that/ and g are functions in

J(D, K). Then there exist a and j3 in D, and p and q in K, such that

/£/(«, p) and gG/03, g). By Lemma 3, f+gGJ(ar\p, p+q)
<ZJ(D, K), from which it follows that J(D, K) is a left ideal.

Also note that J(D, K)=A implies that the function which is

identically equal to e is in J(a, p) for some a^D and p^K; from this

it follows that J(D, K) =A if and only if J(a, p) =A for some «G7),

peK.

Lemma 5.1(^F(A) implies I = (Jac=D,g£iJ(ct, pa) for some 7)£D(X).

Proof. Define D= {o-(/)|/£7}. (It is obvious that 7> = 2X if and

only if 7 = ^4.) We show that D^'D(X). Clearly, a£7> and yDa imply
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yCD- (Use the function which is 0 on 7 and e on X(~\y'.) Now suppose

aCD, PCD, a=a(f), /3=o-(g), where/, gCI- Let us definef*CA and
g*CA as follows:

/*(x) =any left inverse of f(x), for xGX(/),

/*(x)=0forxGcr(/),

g*(x)=0 for xC<r(g),

g*(x) =any left inverse of g(x), for xGX(g)P\a-(/),

g*(x)=0forxGX(g)nX(/).

Then (f*f+g*g)(x) =0 for xG<r(/)fV(g), and (/*/+g*g)(x) =e for all

other xCX. Hence *(J*f+g*g)=*(f)r\<r(g)=anr3. But f*f+g*gd.
Hence af\$CD, and it follows that PGOPO-

Now let/and g be arbitrary functions in I. By Lemma 4, J(a(f), pf)

CI, J(v(g), pg) CI; and hence by Lemma 3, /(o-(/)fV(g), pf+pa) CI.

Using (2) and (3) of Lemma 2, we then have

J(<r(f), P°)C /(*(/) r\ o-(g), p„)C J(a(f) C\ c(g), Pf+ps)d,

and hence UaczD,g^i J(a, pQ) CI- Since it is obvious that we also have

ICUa(ZD,gczi J(a, pg), the lemma is proved.

We are now ready for our main result.

Theorem 1. Let Rbe a ring with unit in which each left ideal is prin-

cipal, and let A be the ring of all functions from X to R. Then ICF(A)

if and only if I = J(D, K) for some DCD(X) and KCKfx< R)-

Proof. Define D as in Lemma 5. Let K= {pg\gd]. We show that

KCKfX, R). First suppose that p0CK and q<pg. Then q(x)Cpg(x)

for all xCX save for a finite set of points Xi, x2, • • ■ , x„. Since g(x)

generates the ideal pg(x), then for x^x,-, i = l, 2, • • • , n, there exists

m,xCR such that mxg(x) generates the ideal q(x). Define a function

/iG^4 by/i(x) =mx for x^x(, and/i(x,)=0 fori = l, 2, • • • , n. Let a{

be an element of R which generates the ideal q(xt). By Lemma 1,

there exists/2G-^ such that f2(x{) =a,- for t = l, 2, • • • , n, and/2(x) =0

for all other xCX. Then f=fig+f2CI, and p/ = q. Hence qCK.

Now suppose that gCI and hCI- For each xCX, let cx be an ele-

ment of R which generates the ideal pg(x)+ph(x). Let/ be the func-

tion in A such that/(x) =cx for all x. Then pf = pg+ph- ButfCJ(v(g)

r\a(h), ps+ph) CI. Hence pg+phCK, and KCKfX, R). The theorem
now follows from Lemma 5.

4. A special case. In the special case when R is a division ring, the

above discussion is of course greatly simplified; and we can also easily

obtain an abstract characterization of the lattice F(A). Assuming

now that R is a division ring, we define, for aG2x,
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J(a) = {/£^4 \f(x) =0 for all but a finite number of x£a},

with the agreement that 7(0) =A. The following relations are easily

verified.

Lemma 6. For a£2x, /3£2X, we have

7(a) +7(0) =/(err\j8),

J(a)rM(p) = J(a\J(3).

For DE<D(X), we now define 7(T>) =U„Gd /(a). We then obtain

the following form of Theorem 1, making the appropriate simplifica-

tions in the proof. This result has, in essence, already been obtained

by Hewitt [2, Theorem 36]. We omit the details.

Theorem 1'. Let Rbe a division ring, A the ring of all functions from

X to R. Then IEF(A) if and only if I = J(D) for some 7J>£D(X).

In this special case we now show how to construct from the set X

a lattice-isomorphic image of the lattice F(A). First we prove

Lemma 7. J(Di) =J(D2) if and only if Di = D2.

Proof. Suppose 7(A) =J(D2), and a£A- The function/which is

0 on a and e on the complement of a is in 7(a) C7(7>,). Then/£7(|8)

for some /3£7>2. This means cOp\ whence a£7>2. Hence DiCD2, and

likewise Z)2CA-

Now for A£D(X), T>2£©(X), we define

D\C\D2 = set-theoretic intersection of Dx and Z>2,

D1+D2= {7£2X|71)0:0/3 for some a£A and /8£A}.

It is easily verified that G(X) forms a lattice under these operations.

We then obtain the following theorem, the proof of which will be left

to the reader.

Theorem 2. Let Rbe a division ring, and A the ring of all functions

from X to R. Then the correspondence J(D)<-+D is a lattice-isomorphism

of F(A) with <D(X).
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