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and in G must separate G. But by Theorem I this set is 0-dimen-

sional, a contradiction. Hence some element of G intersects each of

7>i and D% and thus some element of G' contains an arc h with end-

points in 7>i and D2 respectively. But by an argument similar to that

used in the proof of Theorem I we can exhibit an open subcollection

U of G with U containing g and with U— U countable, a contradic-

tion.
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A NOTE ON BASIC SETS OF HOMOGENEOUS
HARMONIC POLYNOMIALS

E. P. MILES, JR. AND E. WILLIAMS

For any set of non-negative integers  (bf)  such that fa = 1 and

22j-1 bj = n, let

fi]i
co   rt.....,-z(-D-"'-^— , „,    , n*v

n.,1 n(^Y'-'
j—l j-2 \      £      /

where the summation is extended over all (a/) such that,

(a) ffysjy mod 2, 7 = 1, 2, • ■ • , k,

(b) Z«*-i <*/=».
(c) aj = bj,j = 2, 3, ■ ■ ■ , k.

The polynomials (1) were shown by the authors to form a basic set

of homogeneous harmonic polynomials in k variables [l].1

It is easily seen that the following differential recursion formulas

hold for these polynomials:
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1 Numbers in brackets refer to bibliography at the end of the paper.
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Q k

(2) -Hlhs...bk = nHobf-bt, l + 2Z,bj = n;
OXl j_2

d n n-l

——Hb1bi...br..bk = nHblbi...<,bj-v)...bk,
dxj

(3) *
j = 2, 3, • • • , k, h = 0, 1,  2_, *j = »;

J'-l

d * i fc

(4) —— Hob2...bj...bk = — « 2~2 Hib2-.(6,-2).--64, ]£&/= M;
OXi y_2 j-2

where ii^ ...„,...Ci = 0 if Cj<0.

The relations (2) and (3) follow directly from (1) by differentiation.

To prove (4) we note from (2) that

d2       „+i 3       „
(5) —-Hlb2...bk = (n+ 1)—-H0b2...bk

0X[ OXi

and from (3) that

3 n+l n—1

(6) — Hib2...br--bk= (n+l)nHib2...(bj-2)..-bk, j = 2, ■ ■ ■ , k.
ox)

Combining (5) and (6) and noting that ii?^.1. .0lt is harmonic, we ob-

tain (4).

For k = 2 the basic sets (1) give the real and imaginary parts of

(xi+zx2)n. For k = 3 they give a single formulation for the eight

types first given by Protter [2] and later reduced by him to four

types [3]. The differential recursion formulas generalize those given

by Protter. The authors are indebted to Rosenbloom and Bers for

calling their attention to these results of Protter.
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