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1. Introduction. Let

(1) ds2 = E(x, y)dx2 + 2F(x, y)dxdy + G(x, y)dy2,

EG - F2 > 0, E > 0,

be a positive definite Riemann metric of two dimensions defined in

a neighborhood of a surface with the local coordinates x, y. By iso-

thermal parameters we mean local coordinates u, v relative to which

the metric takes the form

(2) ds2 = X(u, v)(du2 + dv2), X(u, v) > 0.

In order that isothermal parameters exist it is necessary to impose

on the metric some regularity assumptions. In fact, it was shown

recently by Hartman and Wintner1 that it is not sufficient to assume

the functions E, F, G to be continuous. So far the weakest conditions

under which the isothermal parameters are known to exist were

found by Korn and Lichtenstein.2 To formulate their theorem we re-

call that a function/(x, y) in a domain D of the (x, y)-plane is said to

satisfy a Holder condition of order X, 0<X^1, if the inequality

(3) | f(x, y) - f(x', y') |   < CV

holds for any two points (x, y), (x', y') of D, where C is a constant

and r is the Euclidean distance between these two points. With this

definition the theorem of Korn-Lichtenstein can be stated as follows:
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1 P. Hartman and A. Wintner, On the existence of Riemannian manifolds which

cannot carry non-constant analytic or harmonic functions in the small, Amer. J. Math.

vol. 75 (1953) pp. 260-276. Also: S. Chern, P. Hartman, and A. Wintner, On iso-

thermic coordinates, Comment-Math. Helv. vol. 28 (1954) pp. 301-309.

2 A. Korn, Zwei Anwendungen der Methode der sukzessiven Annaherungen, Schwarz

Abhandlungen pp. 215-229; L. Lichtenstein, Zur Theorie der konformen Abbildung.

Konforme Abbildung nichtanalytischer, singularitdtenfreier Flachenstiicke auf ebene

Gebiete, Bull. Int. de l'Acad. Sci. Cracovie, ser. A (1916) pp. 192-217. Cf. also the

paper of C. B. Morrey, On the solutions of quasi-linear elliptic partial differential

equations, Trans. Amer. Math. Soc. vol. 43 (1938) pp. 126-166, in which the iso-

thermal parameters are shown to exist in a generalized sense under weaker hypotheses.

Added in proof. Weaker conditions were recently found by Hartman and Wintner.

Cf. their paper, On uniform Dini conditions in the theory of linear partial differential

equations of elliptic type, Amer. J. Math. vol. 77 (1955) pp. 329-354.
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Suppose, in a domain D of the (x, y)-plane, the functions E, F, G

satisfy a Holder condition of order A, 0<X<1. Then every point of D

has a neighborhood whose local coordinates are isothermal parameters.

This theorem is rather useful in the global theory of surfaces, when

analyticity assumptions are not desirable. We shall present here what

seems to be an elementary and rather straightforward proof. Need-

less to say, the essential ideas of this proof are contained in the works

of Korn and Lichtenstein. We believe, however, that some simplifica-

tions are achieved by the consistent use of the complex notation.3

We first observe that the isothermal parameters are invariant un-

der conformal transformations, that is, multiplications of the Rie-

mann metric (1) by a positive factor. Under a conformal transforma-

tion the angle between two vectors remains invariant. If we further

assume that the coordinates x, y form a positive system, that is, if we

allow only those transformations of local coordinates for which the

Jacobian is positive, the angle can be defined, together with its orien-

tation. To express these relations analytically, it will be convenient

to introduce complex-valued differential forms, that is, forms

<o=a-W/?, where a, j3 are real differential forms. We shall write

os=a— t;8.

Since the quadratic differential form in the right-hand side of (1) is

positive definite, we can write

(4) ds* = e\ + el,

where di, 02 are real linear differential forms:

#i = axdx + bidy,

02 = a2dx + b2dy.

Assuming that aifa — a2fa>0, the forms Oi, d2 are determined up to a

proper orthogonal transformation, that is, one with determinant +1.

We put

(6) <t> = 0i + ifa,

so that

(7) ds2 = 00.

The form <p is then determined up to a complex factor of absolute

value 1. A conformal transformation of the Riemann metric is given,

3 After this paper was submitted for publication, it has come to my attention that

a similar proof was given by L. Bers in his mimeographed notes on Riemann surfaces,

New York University, 1951-1952.
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in terms of the form <p, by the multiplication of (j> by an arbitrary

nonzero complex factor. In the recent terminology we say that the

complex linear differential form <p, determined up to a nonzero com-

plex factor, defines an almost complex structure. As discussed above,

such a structure allows the introduction of the notion of oriented

angle.

The determination of isothermal parameters u, v is equivalent to

that of a complex-valued function w = u-\-iv, such that

(8) dw = (1/P)<t>.

For we have then

(9) ds2 = U=  \p \2dwdw =   | p \\du2 + dv2).

Conversely, the isothermal parameters u, v determine a function w

satisfying (8).

2. Preliminaries. We shall first make estimates of certain integrals,

which will be needed in the proof.

Let (£, tj) be any point in the (x, y)-plane, and let

(10) r=+((x- i)2 + (y- V)2yi\

If g(r) is a function of class 1, we have, by exterior differentiation,

j ( /n  -(y-v)dx+(x-£)dy\        g'(r)
d lg(r)-1  = —— dx A dy.

It follows by Stokes Theorem that, if D is a domain bounded by a

curve C and if (£, 77) £7>, we have

f f «'W j j        C   / x -(y~v)dx+(x- £)dy(11) J J -dxdy = J  g(r)-■-
D

This formula remains true, even if (£, 77) £ZJ (but not on C), provided

that the integral in the left-hand side is convergent. The integral

(.2) ,.lf -o-^-n-w, )€C
2ir J c r2

is an integer and is usually called the order of the point (£, rj) relative

to the curve C.

In particular, if g(r) =A, X^O, formula (11) becomes

C r r^dxdy       f      —(y — r)dx + (x — £)dy

D

and is true either when (£, 17) ££> or when X>0. It follows that, if the
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vector joining (£, »j) to a point (x, y)EC turns monotonely in the same

sense, we have

I  C C   rxdxdy       2ir

(14) // —s74>'
D

I  C C    rxdxdy 2ir
(15) --£  S-r-r*, X<0,

\J J r2 \X\
D '       '

where A and 5 denote respectively an upper bound and a lower bound

of the distance from (£, 77) to a point (x, y)GG. We emphasize that

formula (15) is valid only under the assumption (£, r))ED-

3. Main lemma. To simplify our formulas we shall use the complex

coordinate z = x+iy in the (x, y)-plane. If/(x, y) is a complex-valued

function of class 1, we define /„ ft by the equation

(16) df = ftdz + ftdz = f2(dx + idy) + fz(dx — idy).

They are therefore related to the ordinary partial derivatives /„, /„

by the equations

(17) /, = (fx - ify)/2,       f. = (fx + ify)/2.

We shall write the function as f(z, z), thus emphasizing the fact that

it is in general not analytic in z.

On the other hand, we can define these operators /„ fi directly,

without using the partial derivatives fx,fv. For instance, we can adopt

the definitions:

/. = lim {/(* + h/2, z + h/2) - f(z, z)
»->o

+ if(z - hi/2, z + hi/2) - if(z, §)}/*,
(18) .

/. = lim {f(z + h/2, z + h/2) - f(z, z)
»-H)

+ if(z + hi/2, z - hi/2) - if(z, z))/h,

which clearly give (17), when/x, fv exist.

Lemma. Let Dbea disc of radius R about the origin in the (x, y-)plane.

Letf(z, z) be a complex-valued continuous function in D, which satisfies

the condition

(19) I /(f 1, ?0 - /«* W I   ^ Bru,    rlt=  \  fi - f,| ,

for any two points fi, £2ED, where X and B are constants, 0 <X < 1. Let

the function P(f, f) be defined by
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C C  f(z, z)dzdz rr f(z,z)dxdy
(20) -2«F(f,f)=JJ =2iJJ   ±L^—Z>    tCD.

Then: (1) Fr and Ff exist, and Ff=f({, f); (2) If \f(z,z)\ ^A, zED,
the following inequalities are valid:

(21) |F(f,?)|   ^4iL4,

(22) \Ft(t,f)\   ^(2^/X)R*B,

(23) | FQ-i, f0 - F(f2, f2) |   =S 2(A + (2^/X)R*B)rn,

(24) | Ff(fi, fi) - Ff($"2, h) |   ^ M(X)5riL

w&ere yu(X) >0 is independent of fi, fj.

To prove the lemma we write, according to the second equation of

(18),

-MP} = lim 4" f f (/(*. I) - /(f, f)) {.       „. .    1 „-—-
m  2JJ (.(z — f)(z — f — h/2)

1 ) d   r r    dzdz

d-r)(i-r-«/2)/       ni,iJdfJDJ z-t

Computation gives

(25) J J    —--**•
D "

From these it follows that Pj =/(f, ?). Similarly, we prove that Fr

exists and is given by

(26) -2*iFr=ff  f(Z'~Z)-m'f)dzdz.
JJ       (z-i)2

From (20) we have, by using (14) with X = 1,

.     .               r C   dxdy
2t\F\   £2A  I   I- g 8-wAR,

D

which gives (21). Similarly, from (26), we have

C r   rx                 2X+2

2tt I Ft |   g 25 I  I    — dxdy ̂ -irBR\

D

which gives (22).

Inequality (23) is trivial. To prove (24) let D0 be the intersection
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of D with a circular disc of radius 2ri2 = 2|fi — fs| about £2. We can

write

=  f f   {/(*. *) - /(fi, f 0} 7-— dzdz
J J (z — fi)2

- f f   {/(*. *) ~ /(ft, W} 7-— <&**
•J ^ (z — fs)

(27) ». V

+ [f {/(*, *) " /(fi, f i)} ,     *        dzdz

- f f   {/(*. ») - /(fi. ft)} 7-— dzdz
ii {z ~ ^

< i    3    /* r    dzdz
+ {/(ft, fi) - /(fi, fi)} — --•

d£2J J     z — f2
D-Do

We observe that in this sum only the first two integrals are improper

integrals, while the last three are proper integrals. To estimate their

absolute values we first have

I f f {/(*, *) - /(f i, f i)} t--r «S& I
I J J (z — fi)2

C r       dxdy 4irB

S2£//T7rirFrs —(3'",x'
Do       ' '

I   f f {/(*. *) " /(f 2, W 1 7-TV, dzdz I
I J J (z - f2)2

Do

= 27! |       ,-i—- ^-(2r„)\
•J-J |z-r2|2-x      x

Do

The sum of the third and fourth integrals in (27) is equal to

f f{f(z, *) - /(fi, fi) }   f ' d -i—- dzdz

- 4iff f '{fa ~z) - M> ?)+ M> f) - /&"*• ?>) I 7-^ #*"**
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where f is a point on the segment fif2. It follows that its absolute

value is

^4rn(Fi+F2),

where Fi and F2 are respectively upper bounds of the integrals

UJ      (z - »•     dxdy '
D-D0

|//l/(r,f)-/(r,.f,))^
D-D0

along the segment fif2. Using (15), we have

\nAz,si-fi>'f) dM-Bfr^xdy
D-D0 D-D„

4tB        1
<-■ -,

1 - X i£*

| rrf(t,f) -Mufi) J J   ^k4x
I   I-dxdy   S 5ri2—■ •

\JJ      (Z-r)8
D—Dq

The right-hand members of these inequalities can therefore be taken

as Fi and F2 respectively.

Finally, we have, by (25),

C C    dzdz r C    dzdz C C   dzdz
I      - =-I      - = - 2x»f,

J   J      Z  —   f 2 J   J       Z  —   f 2 J   J     Z  —   f 2
D-D0 D D„

the integral over D0 being equal to zero. It follows that the last term

of (27) is zero.

Summing up these estimates, we get

2* I Ff(fi, fi) - Ft(J2, f2) |

4x5                  4icB                    / 4wB \ x
= -— (3r„)* + — (2n,)x + 4(-- + 4irB)r12.

A A \1 — A /

This gives (24), if we set

(28) „(X) = .i(3x + 2*) + 8—2-.
A 1 — A

Thus the proof of the lemma is complete.
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4. An existence and uniqueness theorem on an integro-diff erential

equation; application to isothermal parameters.

Theorem. In the domain D of the complex z-plane defined by \z\ ^R

(= positive constant) let

(29) Zw = a(z, z)wi + b(z, z)wt

be a differential operator, whose coefficients a(z, z), b(z, z) satisfy a

Holder condition of order X, 0<X<1, and vanish at z = 0. Let a(z, z)

be a function in D, satisfying a Holder condition of the same order X.

Then the equation

C C (Zw + aw)(z, z)
(30) 2*-tw(r, f) + J J-——-dzdz = <r(f)        f G D,

D

where cr(ft is a complex analytic function, with cr(0) =0, has exactly one

solution w(z, z), provided that R is sufficiently small.

Before proceeding to the proof of this theorem, we shall make some

further estimates of integrals, based on the lemma of the last section.

The hypothesis of the theorem implies the existence of a number M

large enough to fulfill the following inequalities:

(31) KM,        | «(f, J) |   = M,        | <r(f) |   ^ M,

(32) | fc(fi, fi) - *(fi, h) |   ^ Mr\2,

M2   x
(33) | (Z + a)o-(ri) - (Z + a)«r(f2) |   g —- fUl r12 =   | fx - f, | ,

2A

where f, ft, ft are any three points of D and where h(z, z) stands for

each of the functions a(z, z), b(z, z), a(z, z), o-(z). Since a, b, (Z+a)cr

all vanish at 0, it follows from the corresponding Holder inequalities

that

|a(ft f) |   = M |f M ^^- I W. f) I   = Mi?X-
(34) , .

| (Z + a)cr(f) |   ^ M2i?\

Consider now the function F(ft f) defined in (20). Using the nota-

tion of the lemma of §3, we have

| (Z + a)F(t, f) |

=   I fl(f, fiPt + *(f, ?)Fr + a(f, f)F |
(35) ^ Mi?x(yl + (2x+yx)i?x5) + 4Mi?^l

= ilfi?x{(l + 4i?!-x)4 + (2x+VX)i?xJ5},
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| (Z + a)F(ft, ft) - (Z + a)F(U, ft) |

=  | a(fi, ft)/(ft, ft) + 4(fi, fi)Ff(ft, ?i) + «(ft, ft)F(ft, ft)

- «(ft, ft)/(ft, ft) - 6(ft, ft)Ff(ft, ft) - a(ft, ft)F(ft, ft) |

£ Mri2{.4 + (2X+1/X)RXB + 4RA} + MR.\b + »(X)B)ru

+ M(A + (2X+1/X)icX£)-2r12

£ Mri2{^l+gi(i?M+g2(i?)B},

where

gi(i?) = 4i? + 22-xi?!-x,

g2(R) = {(2X+VX) + M(X) + l}i?x + (8/X)i?

are functions of R, which tend to zero with R.

Having the above inequalities, we shall prove the existence of a

solution of (30) by successive approximations. For reasons which will

be clear later we put the following restrictions on R:

X + 2
(38) 4i?x g 1,        22-x-i?!-x ^ 1,

X

and we choose a constant c, depending only on X, such that

X+2 X
— +-2X = c,

X X + 2
(39)

3X+2
1 + M(X) +-2X ^ c.

X

We now define

2xtw0(r, f) = <Kft\

(40) r r(Zwn + awa)(z,z)
2irtw„+i(ft ft = —   I   I  -dzdz,       n = 0, 1, • • • .

v     2 - *■

For these functions we shall prove the inequalities:

(41) | w„(ft ft |   £ M(cM.Rx)",

(42) | (Z + a)w,(ft f) |   £ ilf(cM^)»+1,

(43) | w„(ft, ft) - wn(ft, ft) |   g M(cMRX)nr\2,

(44) | (Z + a)wn(U, ft) - (2 + a)Wn(ft, ft) | £ (cM2/2X)(CMitX)"ri2.

In particular, the last one implies that the function under the integral
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sign in (40) satisfies a Holder condition, thus allowing the definition

of the next integral.

The inequalities (41)-(44) will be proved by induction on n. For

« = 0, (41) is a consequence of the third inequality of (31), (42) fol-

lows from the third inequality of (34), since e>l, (43) follows from

(32), and (44) from (33).

We now suppose that (41)-(44) are true and proceed to prove the

corresponding inequalities for n + 1. By (21), (23), and the induction

hypothesis, we have

I wB+i(f, f) [   ^ 4R-M(cMR*)n+1 ̂  M(cMR*)n+\

| Wn+lO'l, fi) - wn+i(fr, f2) I

= 2n2{M(cMRx)n+l + (2x+yx)icx(cM2/2x)(cMFx)"}

= M(cMRX)"+lru(l + 2/X)-2r112"X.

The last relation gives (43) (for the index n + 1), on account of the

second inequality of (38).

Similarly, we get from (35) and the induction hypothesis,

| (Z + a)wn+i(!i, f) |   = Mi?x{(l + 4i?1-x)cM2Fx

+ (2x+l/\)R\cM2/2>))(cMRK)n

= M2Fx(cJW7?x)"+1(l + 4ic!-x + 2/X)

= M(cMRv)n+2,

on using the first inequality of (39). By (36), we have

| (Z + a)w„+i(fi, fi) — (Z + a)w„+i(f2, ft) \

= Mr\2M(cMRX)n{(l + gi(R))cMRX + g2(R)cM/2^\

= M\\2(cMRX)n+1{l + gi(R) + (l/(2R)*)g2(R)}.

This gives (44) for w + 1, if

1 + gi(R) + (l/(2R)*)g2(R) = c/2\

But the latter follows from the second inequality of (39). Thus our

induction is complete.

It follows that the series

00

(45) £ wn(z, z)
n-0

converges absolutely and uniformly in D if CMRX<1, and defines a

function w(z, z), which satisfies (30).
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To prove the uniqueness of the solution when R is sufficiently

small, let w'(z, z) be another solution of (30) such that (Z+a)w'(z, z)

satisfies a Holder condition of order X. Then the function

w(z, z) = w(z, z) — w'(z, z)

satisfies the equation

C C (Z + a)w(z, z)
— 2irfw(ft ft =   I   I   -dzdz.

J J z - f
D

Let A and B be respectively the least upper bounds of

| (Z + a)w(t, f)\,tED

and

\(Z + a)0(ft, h) - (Z + a)w(t2, ft) | /r\2, ft, ft ED, Sit* ft.

From (35) and (36) we get

A = MRX{(1 + 4R^)A + (2x+yx)i?\B},

BZ M{A+gi(R)A + g2(R)B}.

From these we easily conclude that, if R is sufficiently small, .4=0.

The latter implies that w(z, z) =0. Thus the proof of our theorem is

complete.

In order to derive from the above existence theorem the theorem of

Korn-Lichtenstein we follow the notation of §1. In a neighborhood

of the point z = x+iy =0 we suppose the almost complex structure to

be given by the complex-valued linear differential form

(46) <f> = (1 - a(z, z))dz + b(z, z)dz,

which is determined up to a nonzero factor. By a linear transforma-

tion on x, y with constant coefficients and by multiplication of (p by

a constant factor when necessary, we can suppose that a(0, 0)

= b(0, 0) =0. Equation (8) is equivalent to the equations

Wj = b/p,        w, = (1 — a)/p.

Elimination of p gives

(1 — a)wi — bwz = 0,

or, if we make use of the operator Z in (29),

(47) Wj = Zw.

By the above existence theorem, the equation
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C rZw(z, z)
(48) 2xM»(r, f)+ J J ——-dzdz = o-(f) f G D, <r(0) = 0,

D

has a solution w(z, z). If o-(ft is not a constant, say <r(ft =ft this solu-

tion has the property that wt(0, 0)t*0. Since Zw(z, z) satisfies a

Holder condition, it follows from our lemma in §3 that w(z, z) satis-

fies (47). Thus we have proved the theorem of Korn-Lichtenstein.

Remarks. 1. As L. Bers observed to me, the same method can be

used to establish the existence of a local solution of the equation

(49) Wz = awz + bwz + aw + I3w + y,

where a, b, a, /3, y satisfy a Holder condition and where \a\ +\b\ < 1.

2. It follows from our proof that the first partial derivatives of the

isothermal parameters also satisfy a Holder condition of order X.
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