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The author in [2] defined full completeness for linear topological

spaces as follows: if X is a real l.t.s. and if, for UEX, U° denotes the

polar of U in the adjoint space X* of continuous linear functionals

on X, then X is said to be /w//y complete if a linear subspace L of X*

is weak* closed whenever LC\ U° is weak* closed, for every neighbor-

hood U of zero in X. It was shown in [2, Corollary 14.1 and Theorem

16] and, independently, by Ptak in [6, p. 350 and p. 336] that full
completeness is stronger in general than completeness, and that every

complete metrisable l.t.s. is fully complete. In addition, the author in

[2, Corollary 17.2] proved that an arbitrary cartesian product of

reals (with the product topology) is fully complete, and in [6, p. 330]

it was shown that full completeness is equivalent (for locally convex

X) to the following: every continuous linear function on X onto an-

other locally convex l.t.s. which takes open sets into somewhere

dense sets is already open (actually, this last property was Ptak's

main concern and was labeled 23-completeness by him).

Our purpose here is to examine this concept in X=C(E), where E

is a completely regular 7\ topological space and C(E) is the l.t.s. of

real-valued continuous functions on E, with the compact-open

topology. More precisely, we study the relations between complete-

ness and full completeness for C(E) and certain related concepts in

E for two particular classes of spaces E: pseudo-finite E and hemi-

compact E. By definition, the space E is pseudo-finite if every com-

pact set of E is finite (the P-spaces recently considered in [4] furnish

examples of pseudo-finite spaces, and as is pointed out there, many

nondiscrete P-spaces exist), and E is hemicompact [see l] if there

exists a countable family A^ of compact subsets of E whose union is

E and such that each compact set is contained in some member of ^.

Two final definitions needed are those of a k space (see [3]) and of the

k extension of a topology. The k extension of the given topology of

E is the strongest topology on E which agrees with the given topology

on each compact set (we denote this derived topology henceforth

by k), and E is a k space if the topology k coincides with the original

topology. Ptak proved in [6, pp. 342-343] that E is a k space when

C(E) is fully complete, and gave an example [6, p. 350] to show the
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converse need not be true. Implicit in his paper is the fact that E is

normal when C(E) is fully complete.

Our first results below include a characterization of k spaces (for

completely regular spaces) together with a brief discussion of pseudo-

finite spaces and hemicompact spaces. It turns out that one of the

conditions in this characterization is that £ endowed with k be com-

pletely regular; in this case we say simply that k is completely regular.

It is emphasized here that the original space E is assumed to be com-

pletely regular throughout this paper.

Lemma 1. The following two conditions together are necessary and

sufficient that E be a k space: (1) C(E) is complete, and (2) k is com-

pletely regular.

Proof. We point out that the requirement that C(E) be complete is

equivalent to the statement that every real-valued function on E

whose restriction to each compact set K is continuous in the relative

topology of K is already continuous.

Necessity. Since E is a k space and thus k coincides with the original

topology, assumed to be completely regular, it is clear that k is com-

pletely regular. Further, it is known [5, p. 76] that every k space E

has C(E) complete.

Sufficiency. Denote by A(E) the family of real-valued functions on

E whose restrictions to each compact set are continuous and by 7^

the weakest topology on E for which all the members of A (E) remain

continuous. It is clear that each set open with respect to the original

topology T is Tj. open and that each TA open set is k open. If C(E) is

complete then A(E) = C(E); hence T and Ta coincide, since T is

completely regular. If k is completely regular then k and TA coincide;

but then E is a k space.

Lemma 2. If Eis either pseudo-finite or hemicompact then the topology

k is completely regular.

Proof. Lemma 3 below together with the fact that every discrete

space is completely regular make clear the statement for E pseudo-

finite.

The author in [2, Theorem 12] proved that if X is an l.t.s., if T

denotes the strongest topology for X* which agrees with the weak*

topology on each U° (U a neighborhood of zero in X), and if t denotes

the topology for X* of uniform convergence on totally bounded sets

of X, then X metrisable implies T and t are the same. Now, let M be

the image of E under the evaluation map e, where, for x£E, ex(f)

=f(x), all fEC(E). Then MQX*, where X = C(E), and it is easily
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shown that e is a homeomorphism between E and J17 when E is

given the topology k and M is given its relative T topology. By our

initial remarks, since E hemicompact implies X is metrisable, T and

t coincide; in particular they coincide on M. But then k is completely

regular, since t is completely regular. This concludes the proof.

The permanence properties of pseudo-finite spaces are easily estab-

lished. For example, every subspace of a pseudo-finite space is pseudo-

finite, every space which is a pairwise disjoint union of open and

closed pseudo-finite subspaces is pseudo-finite, every compact

pseudo-finite space is finite, and every finite product of pseudo-

finite spaces is pseudo-finite (an infinite product need not be). In

addition, we have

Lemma 3. The following conditions are equivalent for E: (1) E is

pseudo-finite, (2) the compact-open and point-open topologies for C(E)

coincide, and (3) k coincides with the discrete topology.

Proof. (1) implies (2) is clear, since each compact set is finite

when E is pseudo-finite. To see that (2) implies (1), let Mbe compact.

Then, M°= \f:fEC(E) and \f(t)\ =1, all (£¥] contains a neighbor-
hood of zero in C(E); hence, by (2), there exists N finite in E such

that N°CM°. But then (M°)0E(Na)0, where for A in C(E), A0=[t:

tEE and \f(t) \ —1, all fEA]. However, E completely regular implies

(since M and N are closed) that (M°)0 = M, (N°)0 = N; thus MQN,

M is finite, and E is pseudo-finite. Now assume (1) and let FEE be

any set. If M is compact, then FC\M is either void or finite (since M

is finite), and thus Ff^M is closed. Therefore, by definition of k,

F is k closed; i.e., every set is k closed and k is the discrete topology.

Conversely, if k is the discrete topology of E, then every compact

set in E is finite, since this is true of the discrete topology and since

the topology k and the original topology have the same compact sets.

Theorem 1. For E a pseudo-finite space the following conditions are

equivalent: (1) E is discrete, (2) E is locally compact, (3) C(E) is com-

plete, (4) C(E) =RB, where RE is the cartesian product of \ E\ copies of

the reals, with the product topology, (5) E is a k space, and (6) C(E) is

fully complete.

Proof. The implication (1)-—>-(2) is clear, since every discrete

space is locally compact, and (2) •—>• (3) follows from the known fact

that C(E) is complete when E is locally compact. If (3) holds, then

every real function on E is continuous, since every function has its

restriction to each finite set continuous; i.e., C(E)=RE (as sets). To

complete (3)•—»• (4), note that the product topology on RE is the
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compact-open topology when E is pseudo-finite. The implication

(4) • —* - (6) follows from the remark of the first paragraph of this

paper, and (6)-—*-(S) was shown by Ptak in [6, pp. 342-343] for

arbitrary completely regular E, and can be derived directly here by

making use of completeness and Lemmas 2 and 1. Finally, (5) ■ —*• (1)

follows from Lemma 3. This completes the proof.

Theorem 2. For E a hemicompact space the following conditions are

equivalent: (1) C(E) is complete, (2) Eis ak space, and (3) C(E) is fully

complete.

Proof. The implication (l)-—*-(2) follows from Lemmas 1 and 2,

and (2) —>■ (3) —>• (1) have already been indicated in the remarks

preceding this theorem (the fact that C(E) is metrisable here is

needed in (2)--»-(3)).

Many questions remain unanswered concerning the relations be-

tween completeness and full completeness for C(E) and the topology

k in E. Whether the conclusion of Theorem 2 holds for spaces other

than hemicompact or pseudo-finite E we do not know. As we pointed

out in paragraph 2, C(E) fully complete implies E is normal, and this

fact together with the fact that both hemicompact E and discrete E

are paracompact suggests the possibility that E is paracompact when

C(E) is fully complete. It would be interesting to find necessary and

sufficient conditions on E that C(E) be fully complete. Finally, the

conclusion of Lemma 2 holds also for locally compact E and for spaces

E satisfying the first axiom of countability, since these spaces are

known to be k spaces [3].
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