A NOTE ON SOME PROPERTIES OF FINITE RINGS

GEORGE F. LEGER, JR.1

Our first result is the determination of those finite rings R which have the following property

$*(k):$ The only ideals of R are $R, R^2, \ldots, R^k = (0)$.

Throughout this note the term "ideal" shall be used in place of the term "two-sided ideal."

THEOREM I. Let R have property $*(k)$ and let $I[z]$ denote the ring of polynomials in the indeterminate z with integral coefficients. Then there exists a prime p and a polynomial $f(z) = pz - \sum_{i=1}^{k-1} a_i z^i$ with $0 \leq a_i < p$ such that $R \cong z I[z]/(f(z), z^k)$. Conversely, if $f(z)$ has this form, then $z I[z]/(f(z), z^k)$ has property $*(k)$.

Proof. Let R have $*(k)$. We assert that R has a prime power number of elements. If not, say $o(R) = ab$ with $(a, b) = 1$, then $A = \{r \mid ar = 0\}$ and $B = \{r \mid br = 0\}$ are two ideals of R such that $A \cap B = \emptyset$, which contradicts $*(k)$. Thus $o(R) = p^n$ for some prime p.

We assume $k > 1$ and choose $x \in R, x \notin R^2$. Then the subring (R^2, x) of R generated by R^2 and x is an ideal properly containing R^2 whence $(R^2, x) = R$. This gives $R = (R^2, x)^* = (R^{*+1}, x^*)$. Taking $s = k - 1, k - 2, \ldots$, we find that R is the image of $z I[z]$ (if the ring of rational integers, z an indeterminate) by the homomorphism ϕ which sends z into x.

Now we claim that $px \in R^2$. Indeed, otherwise we should have $(R^2, px) = R$ whence there exists an integer s such that $x - spx \in R^2$ which gives $x^{k-1} = spx^{k-1} = \cdots = s^k px^{k-1} = 0$ whence $R^{k-1} = (0)$, a contradiction. Thus $px = a_2 x^2 + a_3 x^3 + \cdots + a_{k-1} x^{k-1}$ with the a_i rational integers, so that if we put $f(z) = pz - a_2 z^2 - a_3 z^3 - \cdots - a_{k-1} z^{k-1}$, the ideal $(z^k, f(z))$ is contained in the kernel of ϕ. Conversely, every element of the kernel of ϕ is congruent modulo $(z^k, f(z))$ to a polynomial of the form $b_1 z + \cdots + b_{k-1} z^{k-1}$ with $0 \leq b_i < p$. If $b_i \neq 0$, then $b_i x$ is in R^2 which is impossible. Similarly each $b_i = 0$ for $1 \leq i \leq k - 1$ so that the kernel of ϕ is $(z^k, f(z))$, i.e. $R \cong z I[z]/(z^k, f(z))$.

Conversely let J be any ideal of $z I[z]/(z^k, f(z))$ where $f(z) = pz - a_2 z^2 - \cdots - a_{k-1} z^{k-1}$ with $0 \leq a_i < p$ and let \bar{z} denote the coset of z. Every element of J has the form $b_1 \bar{z} + \cdots + b_{k+1} \bar{z}^{k-1}$ with the b_i...
rational integers and \(0 \leq b_i < p \). Let \(m \) be the smallest index such that \(J \) contains an element of the form \(b_m \overline{z}^m + \cdots + b_{k-1} \overline{z}^{k-1} \) with \(b_m \neq 0 \). Multiplying this element by \(\overline{z}^{k-m-1} \), we see that \(b_m \overline{z}^{k-1} \) is in \(J \) whence \(\overline{z}^{k-1} \) is in \(J \). Multiplying by \(\overline{z}^{k-m-2} \) we see that \(b_m \overline{z}^{k-2} + b_{m+1} \overline{z}^{k-1} \) is in \(J \) whence \(\overline{z}^{k-2} \) is in \(J \). Similarly, \(\overline{z}^{k-3}, \ldots, \overline{z}^m \) are in \(J \) whence \(J = \mathbb{Z}^m \).

Corollary. If \(R \) has property \(\ast(k) \), then there exists a prime \(p \) such that \(o(R) = p^{k-1} \) and the following properties of \(R \) imply each other:

1. \(pR = R^2 \),
2. the additive group of \(R \) is cyclic,
3. \(R \cong \mathbb{Z}/p^k \mathbb{Z} \).

Proof. By Theorem I, there exists a prime \(p \) and a polynomial \(f(z) \) of the form \(f(z) = pz - \sum_{i=2}^{k-2} a_i z^i \) with \(0 \leq a_i < p \) so that \(R \cong \mathbb{Z}[z]/(f(z), z^k) \). Now \(\mathbb{Z}[z]/(f(z), z^k) \) consists of rational integral linear combinations of the cosets \(z, z^2, \ldots, z^{k-1} \) where the coefficients, say \(b_i \), are constrained by \(0 \leq b_i < p \). It follows that \(o(R) = p^{k-1} \).

If \(R \) has property (1), then \(a_2 = 0 \) so that the additive order of \(\overline{z} \) is \(p^{k-1} \) whence \(\overline{z} \) generates the additive group of \(R \) so that \(R \) has property (2).

To see that (2) implies (3) note that \(\overline{z}^2 = h \overline{z} \) for some integer \(h \). It is easy to see that \(h = cp \) where \((c, p) = 1 \) whence there is an integer \(h_1 \) prime to \(p \) so that \((h_1 \overline{z})^2 = p(h_1 \overline{z}) \). Now the map \(p^i \to p^i \overline{z} \) is a homomorphism of \(p^i \) onto \(R \) with kernel \(p^k \).

Theorem II. Let \(R \) be a finite ring with an identity and with a non-zero radical \(N \). Suppose further that there exists a prime \(p \) such that the only ideals of \(R \) and \(R, pR, \ldots, p^k R = (0) \) and that every ideal of \(N \) is also an ideal of \(R \). Then \(R \cong \mathbb{Z}/p^k \mathbb{Z} \).

Proof. Clearly \(o(R) \) is a power of \(p \). Thus \(pR \subseteq N \) and we have \(R \cong N \cong pR \) whence \(N = pR \). Let \(J \) be any ideal of \(N \); then Theorem I implies that \(J \) has the form \(p^i R \), i.e. \(N^r = p^r R = J \), so that every ideal of \(R \) is a power of \(N \). The ring \(N/N^2 \) has no ideals and hence has \(p \) elements. The mapping \(x \to px \) induces a homomorphism of \(R/N \) onto \(N/N^2 \), both considered as double modules over \(R \). As a double module, \(R/N \) is simple; hence \(R/N \cong N/N^2 \) (module isomorphic) so \(R/N \) is cyclic of order \(p \). If \(e \) is the identity of \(R \), then \(R = Ie + pR \) and by induction \(R = Ie + p^i R \), so that \(R = Ie \). Thus \(n \to ne \) is a homomorphism of \(I \) onto \(R \) with kernel \(p^k \).

Syracuse University