Some properties of the proper values of a matrix
HTML articles powered by AMS MathViewer
- by Y. K. Wong
- Proc. Amer. Math. Soc. 6 (1955), 891-899
- DOI: https://doi.org/10.1090/S0002-9939-1955-0076729-7
- PDF | Request permission
References
- Alfred Brauer, Limits for the characteristic roots of a matrix. III, Duke Math. J. 15 (1948), 871–877. MR 26986 G. Frobenius, Über Matrizen aus nicht-negativen Elementen, K. Preuss. Akad. Sitzungsber. (1912) pp. 456-177. C. Neumann, Untersuchungen über das logarithmische und Newtonsche Potential, Leipzig, Teubner, 1877, XVI, p. 368.
- John von Neumann and H. H. Goldstine, Numerical inverting of matrices of high order, Bull. Amer. Math. Soc. 53 (1947), 1021–1099. MR 24235, DOI 10.1090/S0002-9904-1947-08909-6 G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, I, Berlin, Springer, 1925.
- G. Baley Price, Bounds for determinants with dominant principal diagonal, Proc. Amer. Math. Soc. 2 (1951), 497–502. MR 41093, DOI 10.1090/S0002-9939-1951-0041093-2 A. Wintner, Spektraltheorie der unendlichen Matrizen, von S. Hirzel, 1929.
- Y. K. Wong, Some inequalities of determinants of Minkowski type, Duke Math. J. 19 (1952), 231–241. MR 55300
- Y. K. Wong, An inequality for Minkowski matrices, Proc. Amer. Math. Soc. 4 (1953), 137–141. MR 55301, DOI 10.1090/S0002-9939-1953-0055301-7
- Y. K. Wong, On non-negative-valued matrices, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 121–124. MR 62096, DOI 10.1073/pnas.40.2.121
- J. H. Curtiss, “Monte Carlo” methods for the iteration of linear operators, J. Math. Physics 32 (1954), 209–232. MR 0059622
Bibliographic Information
- © Copyright 1955 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 6 (1955), 891-899
- MSC: Primary 15.0X
- DOI: https://doi.org/10.1090/S0002-9939-1955-0076729-7
- MathSciNet review: 0076729