Laplace series and sets of logarithmic capacity zero
HTML articles powered by AMS MathViewer
- by Walter Rudin
- Proc. Amer. Math. Soc. 6 (1955), 915-918
- DOI: https://doi.org/10.1090/S0002-9939-1955-0087783-0
- PDF | Request permission
References
- Leopold Fejér, Über die Summabilität der Laplaceschen Reihe durch arithmetische Mittel, Math. Z. 24 (1926), no. 1, 267–284 (German). MR 1544764, DOI 10.1007/BF01216783
- Walter Rudin, Integral representation of continuous functions, Trans. Amer. Math. Soc. 68 (1950), 278–286. MR 34916, DOI 10.1090/S0002-9947-1950-0034916-8
- Walter Rudin, Uniqueness theory for Laplace series, Trans. Amer. Math. Soc. 68 (1950), 287–303. MR 33368, DOI 10.1090/S0002-9947-1950-0033368-1
- R. Salem and A. Zygmund, Capacity of sets and Fourier series, Trans. Amer. Math. Soc. 59 (1946), 23–41. MR 15537, DOI 10.1090/S0002-9947-1946-0015537-9
- V. L. Shapiro, Logarithmic capacity of sets and double trigonometric series, Canad. J. Math. 6 (1954), 582–592. MR 64190, DOI 10.4153/cjm-1954-063-2 Ch. J. de la Vallée-Poussin, Le potentiel logarithmique, Paris, 1949.
Bibliographic Information
- © Copyright 1955 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 6 (1955), 915-918
- MSC: Primary 40.0X
- DOI: https://doi.org/10.1090/S0002-9939-1955-0087783-0
- MathSciNet review: 0087783