QUASI-EQUICONTINUOUS SETS OF FUNCTIONS

CHIEN WENJEN

The well-known theorem of analysis that if \(F \) is a family of functions defined, equicontinuous, and uniformly bounded on a bounded closed set \(E \) in \(n \)-dimensional real cartesian space \(\mathbb{R}^n \), then from every sequence \(\{f_n\} \) of functions of \(F \) it is possible to select a uniformly convergent subsequence, has been recently generalized to various abstract spaces \([1; 4; 6]\). Consider a set \(F \) of continuous functions on one topological space \(X \) to another, \(Y \). For any point \(x \) of \(X \) and any open set \(W \) of \(Y \) we denote by \((x, W)\) the totality of functions \(f \) in \(F \) for which \(f(x) \in W \). The topology in \(F \) obtained by employing all sets of the \((x, W)\) as a subbase in \(F \) is called the \(\rho \)-topology by Arens [2]. The purpose of this note is to find the necessary and sufficient conditions that it be possible to select a subsequence converging pointwise to a continuous function from any given sequence of continuous functions and the necessary and sufficient conditions that a set of continuous functions be compact in the \(\rho \)-topology.

Definition. Let \(\{f_n\} \) be a sequence of functions from a topological space \(X \) to a metric space \(Y \). \(\{f_n\} \) is said to be \(\epsilon \)-related at a point \(x \in X \) if for every arbitrarily chosen \(\epsilon > 0 \) there is a neighborhood \(U(x) \) of \(x \) such that, corresponding to each point \(x' \in U(x) \), a positive number \(N_{\epsilon}(x, x') \) can be determined satisfying the condition:

\[
\rho[f_n(x), f_n(x')] < \epsilon
\]

everywhere \(n > N_{\epsilon}(x, x') \).

Definition. Let \(F \) be a family of continuous functions from a topological space \(X \) to a metric space \(Y \). \(F \) is called quasi-equicontinuous if in every infinite subset \(Q \) of \(F \) and at any point \(x \in X \) there is a sequence \(\{f_n\} \) contained in \(Q \) which is \(\epsilon \)-related at \(x \).

Theorem. If \(X \) is locally separable and \(Y \) metric, a set of functions \(F \subset Y^X \), where \(Y^X \) denotes the set of all continuous functions from \(X \) to \(Y \), is compact under \(\rho \)-topology if and only if

1. \(F \) is closed in \(Y^X \),
2. \(F(x) = \bigcup_{f \in F} f(x) \) is compact for every \(x \in X \),
3. \(F \) is quasi-equicontinuous.

Presented to the Society, February 26, 1955; received by the editors December 31, 1954 and, in revised form, April 11, 1955.

\(^1\) This problem was suggested by Professor Richard Arens to whom the writer is indebted for many valuable suggestions.
Proof. I. Necessity. (1) F is closed since F is compact and Y^x is a Hausdorff space under ρ-topology.

 (2) Let $g_x(f) = f(x)$. Then g_x is a continuous function of f and the compactness of $F(x)$ follows from the compactness of F.

 (3) Since compactness implies countable compactness, any infinite subset Q of F has a limit point f contained in F. Let $\{x_n\}$ be an enumerable set contained and dense in a neighborhood $U(x_0)$ of a point x_0 in X. We can find a subset $\{f_n\}$ of Q satisfying

 \[\rho[f_n(x_0), f(x_0)] < 1/n, \]
 \[\rho[f_n(x_1), f(x_1)] < 1/n, \]
 \[\ldots \ldots \ldots \ldots \ldots \ldots \]
 \[\rho[f_n(x_n), f(x_n)] < 1/n, \quad n = 1, 2, 3, \ldots. \]

 Then

 \[f_n(x_k) \to f(x_k), \quad k = 1, 2, 3, \ldots \]

 as $n \to \infty$.

 Next we show that $f_n(x) \to f(x)$ at any point x in $U(x_0)$. Suppose on the contrary that $f_n(x)$ does not converge to $f(x)$ at certain point x' in $U(x_0)$. There exist an $\epsilon > 0$ and a subsequence $\{f_{n_i}\}$ of $\{f_n\}$ such that

 \[\rho[f_{n_i}(x'), f(x')] > \epsilon, \quad i = 1, 2, 3, \ldots. \]

 Let g be a limit point of $\{f_{n_i}\}$ in F and let a subsequence $\{f_{n_i}'\}$ of $\{f_{n_i}\}$ be so chosen that

 \[\rho[f_{n_i}'(x'), g(x')] < 1/i, \]
 \[\rho[f_{n_i}'(x_i), g(x_i)] < 1/i, \]
 \[\ldots \ldots \ldots \ldots \ldots \ldots \]
 \[\rho[f_{n_i}(x_i), g(x_i)] < 1/i, \quad i = 1, 2, 3, \ldots. \]

 Then

 \[f_{n_i}'(x') \to g(x'), \]
 \[f_{n_i}'(x_k) \to g(x_k), \quad k = 1, 2, 3, \ldots, \]

 as n_i' approaches to infinity. Now it is clear that

 \[\lim f_{n_i}'(x_k) = \lim f_{n_i}(x_k) = f(x_k) = g(x_k), \quad k = 1, 2, 3, \ldots. \]

 We have therefore

 \[f(x) = g(x) \]
for all \(x \) in \(U(x_0) \) on account of the continuity of the functions \(f(x) \) and \(g(x) \). It follows that
\[
(B) \quad f_n(x') \to g(x') = f(x').
\]
The contradiction between the relations (A) and (B) proves that \(f_n(x) \) converges to \(f(x) \) at any point \(x \) in \(U(x_0) \). In other words,
\[
\lim_{n \to \infty} \lim_{x \to x_0} f_n(x) = \lim_{x \to x_0} \lim_{n \to \infty} f_n(x).
\]
Hence \(\{f_n\} \) is \(\epsilon \)-related at \(x_0 \). The quasi-equicontinuity of the set of functions \(F \) is proved.

II. Sufficiency. Since \(F(x) \) is compact for any \(x \in X \), the topological product \(G = \prod_{x \in X} F(x) \) is compact. Consider the correspondence between \(F \) and a subset \(S \) of \(G \) obtained by assigning to each \(f \in F \) the point in \(G \) with coordinates \(f(x) \), \(x \) ranging over \(X \); this correspondence is a homeomorphism. In order to prove the compactness of \(F \) it is sufficient to prove that \(S \) is compact, that is, to prove that \(S \) is closed in \(G \).

Let \(g \) be a limit point of \(S \) with coordinates \(g(x) \). There exists a sequence \(\{f_n\} \subset F \) such that
\[
\rho[\rho[f_{n_0}(x_0), g(x_0)] < 1/n,
\rho[\rho[f_{n_1}(x_1), g(x_1)] < 1/n,
\ldots
\rho[\rho[f_{n_n}(x_n), g(x_n)] < 1/n, \quad n = 1, 2, 3, \ldots ,
\]
where \(\{x_n\} \) is an enumerable set dense in a neighborhood \(U(x_0) \) of \(x_0 \). By the quasi-equicontinuity of the set of functions \(F \) there is a subsequence \(\{f_{n_i}\} \) of \(\{f_n\} \) such that for each \(\epsilon > 0 \) there is a neighborhood \(V(x_0) \) of \(x_0 \) contained in \(U(x_0) \) such that
\[
\rho[
ho[f_{n_i}(x_0), f_{n_i}(x)] < \epsilon
\]
for any \(x \in V(x_0) \) and all \(n_i > N_i(x_0, x) \). Now
\[
\rho[\rho[g(x_0), g(x_k)] < \rho[\rho[g(x_0), f_{n_i}(x_0)] + \rho[\rho[f_{n_i}(x_0), f_{n_i}(x_k)]
\rho[
ho[f_{n_i}(x_k), g(x_k)] < 3\epsilon
\]
for any \(x_k \in V(x_0) \), if \(n_i \) is sufficiently large. By the same reasoning for any point \(x \) in \(V(x_0) \) there is a neighborhood \(W(x) \) of \(x \) contained in \(U(x_0) \) such that

\[\text{That the } \epsilon \text{-related condition was given by Hobson as a necessary and sufficient condition for interchange of order in repeated limits was pointed out by the referee [6, p. 409].}\]
\[\rho [g(x), g(x_k)] < 3\varepsilon \quad \text{if} \quad x_k \in \{ x_n \} \cap W(x). \]

Then
\[\rho [g(x_0), g(x)] < \rho [g(x_0), g(x_j)] + \rho [g(x_j), g(x)] < 6\varepsilon \]
for any \(x \in V(x_0) \), where \(x_j \in V(x_0) \cap W(x) \). \(g(x) \) is therefore continuous at \(x_0 \), that is, \(g \) belongs to \(S \) and the closedness of \(S \) is proved.

Corollary. Let \(F \) be a family of continuous functions from a separable space \(X \) to a metric space \(Y \). The necessary and sufficient conditions that it be possible to select a subsequence converging pointwise to a continuous function from any given sequence of functions of \(F \) are:

1. \(F(x) \) is countably compact for any \(x \in X \),
2. \(F \) is quasi-equicontinuous.

Corollary. Let \((C) \) be the set of all continuous functions defined on the closed interval \((0, 1)\) and let \(F \) be any subset of \((C)\). \(F \) is weakly compact if and only if it is weakly closed and quasi-equicontinuous.

References

University of California, Los Angeles