Introduction. This note contains a method for constructing chain-homotopy operators suitable for the de Rham cohomology theory. In particular, it is proved that differentiably homotopic maps induce chain homotopic chain-mappings in the exterior algebra of differential forms (Formula 13 below; cf. pp. 80–81 of [1], where the same formula is obtained). This shows that the de Rham theory satisfies the "homotopy axiom" in the sense of S. Eilenberg and N. E. Steenrod (cf. [2]); hence the de Rham cohomology groups of a differentiably contractible manifold are trivial. This fundamental result is often referred to as the "Poincaré Lemma."

A simple generalization is given in the case of an almost product structure.

Almost complex and complex structures are investigated in §5; no genuine chain-homotopies are obtained, and in §6 is given an example which shows that $\bar{\partial}$-cohomology does not satisfy the homotopy axiom, even in the case of complex manifolds and analytic homotopies; this example is due to Professor K. Kodaira.

1. Definitions and notations. By "manifold" we mean "differentiable manifold of class $C^\infty,"$ by "map," "map of class $C^\infty,"$ etc.; and all notions such as tangent vector or differential form will be taken in their C^∞-sense. Tangent vectors will always be taken to have been defined by the C^∞-analogue of the definition given in §IV, Chap. II of [10].

If U is a manifold, we denote by $T^1(U)$ the tangent bundle, by $T(U) = \bigoplus_{p=0}^\infty T^p(U)$ the bundle of exterior algebras of tangent vectors. Note that $T^0(U) = \mathbb{R}$ = the reals. By $\Phi(U) = \bigoplus_{p=0}^\infty \Phi^p(U)$ we denote the exterior algebra of differential forms; for our purposes, the most convenient definition is

$$\Phi^p(U) = \text{Hom}_R(U) [\times T^p(U), R(U)]$$

where $R(U) = \Phi(\mathbb{R}) = R$-module of C^∞-maps $U \to R$, and $\times T^p(U)$ denotes the $R(U)$-module of cross-sections of $T^p(U)$. \{If Λ is a commutative ring and A, B are Λ-modules, $\text{Hom}_\Lambda (A, B)$ denotes the Λ-module of Λ-homomorphisms $A \to B$.\}

If $v, v' \in \times T^p(U)$ are such that $v| V = v'| V$ ("on $V\"$), where V
is some open set of U, it is easy to see that $\phi v = \phi v'$ on V for $\phi \in \Phi^p(U)$. Hence the definition of $\Phi^p(U)$ is a "local" one; and $\phi \in \Phi^p(U)$ can be given by giving its values on germs of cross-section; a germ of cross-section at $x \in U$ is the equivalence class of all cross-sections which agree (pairwise) in some neighborhood of x.

If $\phi \in \Phi^{p+1}(U)$ and $v \in \mathcal{X}^p(U)$ we define the contraction $v \cdot \phi \in \Phi^q(U)$ by

$$(v \cdot \phi)v' = \phi(v \wedge v')$$

where $v' \in \mathcal{X}^q(U)$.

The exterior derivative $d : \Phi^p \to \Phi^{p+1}$ is given by the formula

$$(d\phi)(v_1 \wedge \cdots \wedge v_{p+1}) = \sum_{i=1}^{p+1} (-1)^{i+1} v_i (\phi(v_1 \wedge \cdots \hat{v}_i \cdots \wedge v_{p+1}))$$

$$+ \sum_{i < j} (-1)^{i+j+1} \phi([v_i, v_j] \wedge v_1 \wedge \cdots \hat{v}_i \cdots \hat{v}_j \cdots \wedge v_{p+1})$$

where the v_i are germs of $\mathcal{X}^1(U), \phi \in \Phi^p(U)$, $[v_i, v_j] = v_iv_j - v_jv_i$ and $\cdots \hat{v} \cdots$ denotes the omission of the term with index i. The following will be useful:

Lemma 1. The homomorphism d is uniquely characterized by:

(i) If $\phi \in \Phi^p(U), v \in \mathcal{X}^1(U)$, $(d\phi)v = \phi v$,

(ii) If $\phi \in \Phi^p(U)$, $d^2\phi = 0$,

(iii) If $\phi \in \Phi^p(U), \psi \in \Phi(U), d(\phi \wedge \psi) = d\phi \wedge \psi + (\psi)\phi \wedge d\psi$.

Since locally $\Phi^1(U)$ is (isomorphic to) the Grassmann algebra generated by $\Phi^1(U)$ regarded as an $\mathbb{R}(U)$-module, (ii) and (iii) imply (ii'):

$d^2 = 0$.

If U, V are manifolds, and $f : U \to V$ is a map, we denote by $f* : T(U) \to T(V)$ and $f** : \Phi(V) \to \Phi(U)$ the corresponding induced maps.

If c is a differentiable (i.e., C^∞) p-chain in U and $\phi \in \Phi^p(U)$, we shall write $\phi \cdot c = \int \phi$. Stokes's theorem then takes the form $(df) \cdot c = \phi \cdot b$, where b denotes the boundary operator of the singular theory.

2. **Almost product structure.** We say that the manifold U has almost product structure (P, Q) if there are homomorphisms $P, Q : T^1(U) \to T^1(U)$ such that $T^1(U) = PT^1(U) \oplus QT^1(U)$ (direct sum). Thus for $v \in T^1(U), v = Pv + Qv$ and hence if $v_i \in T^1(U)$ ($i = 1, \cdots, p$), then $v_1 \wedge \cdots \wedge v_p$ is a sum of terms each of which is the exterior

More accurately: $\Phi(V)$ is the Grassmann algebra generated by $\Phi^p(V)$ for sufficiently small neighbourhoods $V \subset U$.

For fibre bundles the fibres of which are modules, a homomorphism is a fibre-preserving map which, restricted to any fibre, is a homomorphism in the algebraic sense.
product of \(r \) vectors of type \(P_\nu \), by \(s \) vectors of type \(Q_\nu \) where \(r + s = p \); for given \(r, s \) such a term is called a vector of “type (\(r, s \))”; and this process defines a unique projection operator

\[
\prod_{r,s} : T^{r+s}(U) \rightarrow T^{r+s}(U)
\]

onto the submodule of vectors of type \((r, s) \).

We then define projection operators \(\prod_{r,s} : \Phi^{r+s}(U) \rightarrow \Phi^{r+s}(U) \) by

\[
\prod_{r,s} \phi = \phi \prod_{r,s}.
\]

If \(\phi = \prod_{r,s} \phi \) we say that \(\phi \) is of type \((r, s) \) (cf. [8]).

Let \(U, V \) be manifolds with almost product structures \((P, Q), (\overline{P}, \overline{Q})\) respectively. A map \(F: U \rightarrow V \) is said to be of type \((l, m)\) (in relation to these structures) if

\[
\prod_{r+l, s+m} F_* = F_* \prod_{r,s}.
\]

A map of type \((0,0)\) is said to be admissible; the same definitions apply to any homomorphisms \(T(U) \rightarrow T(V) \) or \(\Phi(V) \rightarrow \Phi(U) \).

An examination of formula (2) shows that \(d = d'_2 + d'_1 + d''_1 + d''_2 \) where \(d'_2, d'_1, d''_1, d''_2 \) are of types \((2, -1), (1, 0), (0, 1), (-1, 2)\) respectively. \(d_2 = 0 \) leads to the following identities:

\[
\begin{align*}
\left(\text{3}\right) \quad d'_2 &= d'_2 d'_1 + d'_1 d'_2 = d'_2 d''_1 + (d'_2)^2 + d''_1 d'_2 \\
&= d''_1 d'_1 + d''_1 d'_2 + d'_1 d''_2 + d''_2 d'_1 \\
&= d''_1 d''_2 + d'_1 d''_1 = d''_2 d''_2 + (d''_1)^2 + d'_1 d'_2 = (d''_2)^2 = 0.
\end{align*}
\]

In analogy to Lemma 1, we now define the \(R(U) \)-homomorphism \(d_p: \Phi^p(U) \rightarrow \Phi^{p+1}(U) \) by

(i) If \(\phi \in \Phi^p(U) \) and \(v \in \times T^1(U) \), then

\[
(d_p \phi)v = (Pv)\phi.
\]

(ii) If \(\phi \in \Phi^p(U) \), \((d_p^2 + d d_p)\phi = 0 \).

(iii) If \(\phi \in \Phi^p(U) \) and \(\psi \in \Phi(U) \),

\[
d_p(\phi \wedge \psi) = d_p \phi \wedge \psi + (-1)^r \phi \wedge d_p \psi.
\]

It easily follows that

(ii') \(d_p d + d d_p = 0 \).

It is easily verified that \(2d''_2 + d'_1 - d''_1 \) satisfies these conditions; whence

\[
\text{(4)} \quad d_p = 2d''_2 + d'_1 - d''_1.
\]

Writing also

\[
\text{(5)} \quad d_q = 2d''_2 + d'_1 - d'_2,
\]
we see that $d = d_P + d_Q$ and, by symmetry, that d_Q is related to Q as d_P is to P.

Using (3), (4), we see that $d_P = d_P^2 + 2(d'_1 + d''_1)$ (4, 4'). Hence, noting $d_P^2(U) = d_P + d_P''$ and appealing to Lemma 1, we have

Lemma 2. $d_P^2 = 0$ if and only if $d = d'_1 + d''_1$; i.e., $d'_1 = d''_1 = 0$; i.e., $d_P = d'_1$, $d_Q = d''_1$.

It is not hard to prove that the conditions of Lemma 2 are equivalent to the "integrability" of the given almost product structure in which case we have a local product structure.

3. **The $/ \Delta$ operation.** Let U, V be manifolds. An obvious almost product structure is defined on $U \times V$ by regarding P, Q as the (natural) projection operators associated with the direct sum decomposition $T^1(U \times V) = T^1(U) \oplus T^1(V)$. We shall thus regard vector fields in U, V as lying, in an evident manner, in $U \times V$. It is clear that the conditions of Lemma 2 pertain; we write $d_U = d_P$, $d_V = d_Q$. d_U corresponds to "differentiation in U only."

Now, let $\phi \in \Phi^{p+1}(U \times V)$ and let c be a singular r-chain in U. Then (using a notation due to N. E. Steenrod, cf. [3]) we define $\phi/c \in \Phi^r(V)$ by

$$\phi/c(v)(y) = (-1)^{r}(j_v^*(v \cdot \phi)) \cdot c$$

where $v \in X^r(V)$, $y \in V$ and $j_v: U \rightarrow U \times V$ is the map $x \rightarrow (x, y)$. Then, as is easily seen,

$$(-1)^{r}d(\phi/c) = (-1)^{r+1}d_V\phi/c$$

Also, if $v' \in X^{r+1}(V)$ we have

$$(-1)^{e+1}(d_U\phi/c)(v')(y) = j_v^*(v' \cdot \phi) \cdot c$$

$$= (-1)^{e+1}d(v' \cdot \phi) \cdot c = (-1)^{e+1}j_v^*(v' \cdot \phi) \cdot bc$$

$$= (-1)^{e+1}(\phi/c)(v')(y).$$

Hence

$$d(\phi/c) = \phi(bc) = (-1)^{e}(\phi/c)$$

(cf. 2.9 in [3]).

Now assume that V has almost product structure (P, Q) and that $U = U_P \times U_Q$. Define an almost product structure $(\overline{P}, \overline{Q})$ on $U \times V$ by

$$\overline{P}T^1(U \times V) = T^1(U_P) \oplus PT^1(V),$$

$$\overline{Q}T^1(U \times V) = T^1(U_Q) \oplus QT^1(V).$$
In this situation, formula (8) splits up into various components. We discuss one special case, namely that when $c = c' \times x_0$ where c' is an r-chain in U_P and x_0 is a point of U_Q regarded as a 0-chain. In this case the homomorphism $\phi \rightarrow \phi/c$ is of type $(-r, 0)$ in relation to the almost product structures $(P, Q), (P, Q)$. By examining (8) in terms of its components we obtain:

\[
\begin{align*}
\delta_i' \phi/c &= (-1)^r \delta_i' (\phi/c), \\
\delta_i' \phi/c &= (-1)^r \delta_i' (\phi/c), \\
\delta_i' \phi/c &= (-1)^r \delta_i' (\phi/c), \\
\delta_i' \phi/c &= (-1)^r \delta_i' (\phi/c),
\end{align*}
\]

from which, using (4) and (5), we obtain

\[
\begin{align*}
d \phi/c - \phi/\psi &= (-1)^r d \phi/c, \\
d \phi/c &= (-1)^r d \phi/c.
\end{align*}
\]

4. Chain homotopies. Let us retain the notations of §3, let W be a third manifold and $F: U \times V \rightarrow W$ a map. We define $\lambda: \Phi(W) \rightarrow \Phi(V)$ by

\[
\lambda \psi = (-1)^{r+1} (F^* \psi)/c
\]

for $\psi \in \Phi(W)$. Then, using (8) we get

\[
(d \lambda + (-1)^{r+1} d \lambda) \psi = (F^* \psi)/bc.
\]

Now, consider the case when $c: I \rightarrow U$ is a singular 1-simplex and define $f_1: V \rightarrow W$ by $f_1(y) = F(c(t), y)$; then F represents a homotopy, and (12) becomes

\[
d \lambda + \lambda d = f_1^* - f_0^*
\]

showing that differentiably homotopic maps induce chain-homotopic homomorphisms.

Next, consider the almost product structures introduced in the second part of §3, and assume that F is admissible (in relation to these structures). The homomorphism λ defined by (11) in terms of an r-chain c "in U_P" will be denoted by λ_P. Using (10), we get

\[
\begin{align*}
(d \lambda_P + (-1)^{r+1} \lambda_P d_P) \psi &= F^* \psi/bc, \\
\lambda_P^* d_P + (-1)^{r+1} \lambda_P d_Q &= 0
\end{align*}
\]

and finally, in analogy to (13),

\[
\begin{align*}
d \lambda_P + \lambda_P d_P &= f_1^* - f_0^*
\end{align*}
\]

in other words: A homotopy consistent with a given almost product
structure induces chain-homotopies for the operator \(d_P \); and similarly for \(d_Q \).

5. **Almost complex structure** (cf. \([5; 6]\)). Let \(M \) be an \(m \)-manifold, and let \(C^*(M) = T(M) \otimes \mathbb{R} \mathbb{C} \) where \(\mathbb{C} \) are the complex numbers; and let \(C(M) = \mathbb{C} \)-module of \(\mathbb{C} \)-maps \(M \rightarrow \mathbb{C} \). We define

\[
C\Phi^p(M) = \text{Hom}_{C(M)}[\times C^p(M), C(M)]
\]

and \(C\Phi(M) = \sum_{p=0}^{\infty} C\Phi^p(M) \); cf. (1). We also define \(d: C\Phi^p(M) \rightarrow C\Phi^{p+1}(M) \) by the formal analogue of (2); the definitions of \(f_\ast, f^\ast \) are similarly extended. It is clear that the whole “complex” theory is analogous to the “real” theory; also, \(C(M) \) is naturally isomorphic to \(R(M) \otimes_R \mathbb{C} \), \(C\Phi^p(M) \) to \(\Phi^p(M) \otimes_R \mathbb{C} \) and, under this isomorphism, \(d \) corresponds to \(d \otimes 1 \).

We say that \(M \) has a complex almost product structure if there are \(C(M) \)-homomorphisms \(P, Q: C^1(M) \rightarrow C^1(M) \) such that \(C^1(M) = P C^1(M) \oplus Q C^1(M) \), \(P, Q \) being projections. It is clear that the theory of almost product structures (§2 above) has an exact analogue in this situation: and we take over, without change, the definitions of \(\prod_{\ast r}, \prod_{\ast s}, \text{“type (r, s),” d = d_P + d_Q }, \) complete with Lemma 2.

We say that \(M \) has almost complex structure if it has complex almost product structure together with an isomorphism \(k: C^1(M) \rightarrow C^1(M) \) such that \(k P C^1(M) = Q C^1(M), k Q C^1(M) = P C^1(M) \), \(k^2 = 1 \). Then \(k \) can be extended to \(k: C^1(M) \rightarrow C^1(M) \) (and with a slight abuse of notation!) \(k: C\Phi(M) \rightarrow C\Phi(M) \). We write \(kv = \bar{v}, k\phi = \bar{\phi} \). In this case, in accordance with the usual notation, we write \(\partial, \bar{\partial} \) for \(d_P, d_Q \). If \(\bar{\partial}^2 = 0 \) (cf. Lemma 2) the given almost complex structure is called integrable (cf. \([5]\)).

It is well known that if \(M \) has almost complex structure and \(n \) complex dimensions, then it can be assigned a Hermitian metric (cf. \([4, p. 209]\)) and in terms of this a duality operator \(\ast: C\Phi^p(M) \rightarrow C\Phi^{2n-p}(M) \) and a scalar product \((\phi, \psi) \) for \(\phi, \psi \in C\Phi^p(M) \); cf \([1; 5; 7; 8]\). These operations satisfy

\[
\left(\prod_{r,s}^* \phi, \psi \right) = \left(\phi, \prod_{r,s}^* \psi \right),
\]

\[
\ast \prod_{r,s}^* = \prod_{r,s}^* \ast
\]

and also, writing \(\partial = - \ast \partial \ast \),

\[
(\phi, \partial \psi) = (\bar{\partial} \phi, \psi)
\]

if \(\phi, \psi \) are forms with compact carriers (cf. \([5]\)). We define
\[(17) \quad \Delta = 2(\partial \bar{\partial} + \bar{\partial} \partial). \]

Now, let \(U \) be a subdomain (i.e., an open set) of \(M \) such that the closure of \(U \) in \(M \) is compact. By \(\mathcal{L} \) denote the Hilbert space (in terms of the scalar product just introduced) of norm-finite differential forms on \(U \) and by \(\mathcal{J} \) the space of forms \(\phi \in C\Phi(M) \) such that \(\partial \phi = \bar{\partial} \phi = 0 \) and \(\phi = 0 \) outside \(U \); then \(\mathcal{J} \) can be regarded as a subspace of \(\mathcal{L} \); we denote by \(F: \mathcal{L} \to \mathcal{J} \) the associated projection operator. There exists a "Green's operator" \(G: \mathcal{L} \to \mathcal{L} \) such that
\[(18) \quad \Delta G\phi = \phi - F\phi \]
(cf. [5]).

Define \(H, J: \mathcal{L} \to \mathcal{L} \) by
\[(19) \quad H = 2\partial(\partial G - G\partial) + F, \]
\[J = 2\bar{\partial}G. \]

If the structure is complex, \(\partial^2 = 0, \bar{\partial}^2 = 0 \) and hence \(\partial \Delta = \bar{\partial} \Delta, \bar{\partial} \Delta = \partial \Delta; \) hence in this case \(\Delta H = 0 \). If \(U \) is a closed, compact manifold, \(\partial G - G\bar{\partial} = 0 \) and \(H = F \).

In the case of complex euclidean \(n \)-space, it is trivial that there exists a Green's operator \(G \) satisfying \(\Delta G\phi = \phi \) and, if \(\phi \) has a compact support, \(\partial G\phi = G\partial\phi \). Hence, if we assume that \(U \) is an arbitrary subdomain of complex euclidean space, then \(H\phi = 0 \) provided that the support of \(\phi \) is compact relative to \(U \).

As is easily verified,
\[(20) \quad \partial J + J\partial = I - H. \]

Let \(V \) be another almost complex manifold; give to \(U \times V \) the natural induced almost complex structure; and by \(J_U, H_U, \partial_U \) denote the operators on \(C\Phi(U \times V) \) associated with \(U \). Then, if \(\phi \) is some singular \(r \)-chain in \(U \), define \(L: C\Phi(U \times V) \to C\Phi(V) \) by
\[(21) \quad L\phi = J_U \phi/\partial. \]

It is easily seen that
\[(22) \quad (-1)^{r+1}\partial L + L\partial = L\partial_U \]
or, using (20),
\[(23) \quad ((-1)^{r+1}\partial L + L\partial)\phi = (I - H_U - \partial_U J_U)\phi/\partial. \]

Notice that, since there is no Stokes's formula in the geometrical sense for \(\partial \), no formula analogous to (8) can be obtained; similarly, no formulas analogous to (10) seem to exist, as singular chains cannot be closely related to almost complex structure.
In particular, if $r = 0$, $\partial d J_U/c = 0$ and (23) becomes

$$(-\bar{\partial}L + L\bar{\partial})\phi = (I - H_U)\phi/c.$$

Let W be a third almost complex manifold, $F: U \times V \to W$ a map such that $\partial F^* = F^* \bar{\partial}$, let $c = u_1 - u_0$ where $u_0, u_1 \in U$, write $f_*(v) = F(u_1, v)$, and $\lambda = LF^*: \mathbb{C} \Phi(W) \to \mathbb{C} \Phi(V)$. Then, (24) gives

$$(-\bar{\partial}\lambda + \lambda \partial)\phi = (f_1^* - f_0^*)\phi - (H_U F^*\phi)_1 + (H_U F^*\phi)_0$$

where $(H_U F^*\phi)_i = H_U F^*\phi|_{u_1 \times V}$.

If U is compact and connected, $H_U = F_U$ where F_U is the projection onto the space of forms satisfying $d_U\phi = \bar{\partial}U\phi = 0$, and \mathcal{J}_U (subspace of such forms of degree 0) is isomorphic to C; then $(H_U F^*\phi)_1 = (H_U F^*\phi)_0$ and (25) becomes

$$-\bar{\partial}\lambda + \lambda \partial = f_1^* - f_0^*.$$

6. An example (cf. the Introduction). Let G be the multiplicative group consisting of matrices of the form

$$z = \begin{bmatrix} 1 & z_1 & z_2 \\ 0 & 1 & z_3 \\ 0 & 0 & 1 \end{bmatrix}$$

where $z_i \in C$; let D be the (discrete) subgroup consisting of all z such that z_i are Gaussian integers. Then $V = G/D$ (i.e., the space of right cosets $z \cdot D$) is a homogeneous compact complex manifold (which was first considered by Iwasawa). It is easily seen that (in classical notation) the holomorphic 1-forms

$$w_1 = dz_1, \quad w_2 = dz_2 - z_3dz_1, \quad w_3 = dz_3$$

are right invariant on G; they can hence be regarded as holomorphic 1-forms on V. Further, it is not hard to verify that w_1, w_2, w_3 generate the $\bar{\partial}$-homology group $H^{1,0}_\delta(V)$ of forms of type $(1, 0)$. Hence

$$\dim H^{1,0}_\delta(V) = 3.$$

By the duality theorem of Kodaira-Serre (cf. [9; 11])

$$\dim H^{2,3}_\delta(V) = 3.$$

It is easy to verify that

$$\psi_1 = w_2 \wedge w_3 \wedge w_1 \wedge w_2 \wedge w_3,$$
$$\psi_2 = w_3 \wedge w_1 \wedge w_1 \wedge w_2 \wedge w_3,$$
$$\psi_3 = w_1 \wedge w_2 \wedge w_1 \wedge w_2 \wedge w_3.$$
represent linearly independent elements of $H^{2,3}(V)$ and hence generate this group.

Now, every $t \in G$ induces the analytic homeomorphism $T_t: z \mapsto t \cdot z$ of V onto itself; obviously each T_t is homotopic to the identity. We have

$$(T_t)^*w_1 = w_1,$$
$$(T_t)^*w_2 = w_2 - l_3w_1 + l_1w_3,$$
$$(T_t)^*w_3 = w_3$$

and hence

$$(T_t)^*\psi_1 = \psi_1 + l_3\psi_2,$$
$$(T_t)^*\psi_2 = \psi_2,$$
$$(T_t)^*\psi_3 = \psi_3 - l_1\psi_2$$

showing that there is no chain-homotopy.

REFERENCES

Birkbeck College and
Princeton University